全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CdS-Sensitized ZnO Nanorod Photoelectrodes: Photoelectrochemistry and Photoinduced Absorption Spectroscopy

DOI: 10.1155/2011/915123

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thin films of ZnO semiconductor nanorods (ZnO-nr) of 6?μm length and thin ZnO nanoparticulate films (ZnO-np) have been prepared and modified with Q-dots CdS for comparison study. PIA (photoinduced absorption spectroscopy), a multipurpose tool in the study of dye-sensitized solar cells, is used to study a quantum-dot-modified metal-oxide nanostrucutred electrode. Q-dot CdS-sensitized ZnO-nr (1D network) sensitized photoelectrode has demonstrated best performances in both photoelectrical response (IPCE max = 92%) and broadening response into far visible comparing to ZnO-np-based CdS solar cell. Preadsorbing ZnO-nr with ZnO-np does not bring further improvement. Time constant for electron injection into ZnO-nr conduction band was relatively fast decay of 6.5?ms, similar to TiO2-coated CdS, and proves at least a well pore filling of ZnO-nr film by ultrafine CdS particles. Unidirectional electron transfer mechanistic in ZnO-nr has played a major role in these performances. 1. Introduction When used as electrodes in regenerative photoelectronchemical cells, wide bandgap nanostructured metal oxide (MO) semiconductor materials can serve as carriers of solar absorbers such as organometallic dyes [1–5] or inorganic narrow bandgap semiconductors (quantum dots: Q-dots) [6–9]. Power conversion efficiencies in the range of 8–12% in diffuse daylight have been obtained in the sensitization of highly porous TiO2 film with only a submonolayer required ruthenium complex [1, 2]. On the other hand, wide bandgap semiconductors have been sensitized by short bandgap (Q-dots) semiconductor materials CdSe/TiO2 [6], CdS/TiO2-SnO2 [9] as alternative to dye sensitization. Vogel and coworkers [7] have investigated the sensitization of nanoporous TiO2, ZnO by Q-sized CdS. Photocurrent quantum yields of up to nearly 80% and opencircuit voltages up to 1?V range were obtained. Under visiblelight irradiation, only the sensitizer is excited, and electrons transferred to their conduction band are injected to the inactivated MO semiconductor conduction band. If the valence band of the sensitizer is more cathodic than the valence band of MO, hole generated in the semiconductor remains there and cannot migrate to MO. Thus, the two charges will be separated effectively. Dye-sensitized solar cells (DSCs) based on one-dimensional (1D) ZnO nanostructures, which exhibit significantly higher electron mobility than that of both TiO2 and ZnO-np films [10], have recently been attracting increasing attention [10, 11]. In contrast with the dye-sensitized solar cells, fundamental understanding for the

References

[1]  B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[2]  A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010.
[3]  I. Bedja, S. Hotchandani, and P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II) complex,” Journal of Physical Chemistry, vol. 98, no. 15, pp. 4133–4140, 1994.
[4]  I. Bedja, P. V. Kamat, and S. Hotchandani, “Fluorescence and photoelectrochemical behavior of chlorophyll a adsorbed on a nanocrystalline SnO2 film,” Journal of Applied Physics, vol. 80, no. 8, pp. 4637–4643, 1996.
[5]  T. A. Heimer, E. J. Heilweil, C. A. Bignozzi, and G. J. Meyer, “Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces,” Journal of Physical Chemistry A, vol. 104, no. 18, pp. 4256–4262, 2000.
[6]  D. Liu and P. V. Kamat, “Electrochemically active nanocrystalline SnO2 films: surface modification with thiazine and oxazine dye aggregates,” Journal of the Electrochemical Society, vol. 142, no. 3, pp. 835–839, 1995.
[7]  R. Vogel, P. Hoyer, and H. Weller, “Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors,” Journal of Physical Chemistry, vol. 98, no. 12, pp. 3183–3188, 1994.
[8]  J. Rabani, “Sandwich colloids of ZnO and ZnS in aqueous solutions,” Journal of Physical Chemistry, vol. 93, no. 22, pp. 7707–7713, 1989.
[9]  I. Bedja, S. Holchandani, and P. V. Kamat, “Photosensitization of composite metal oxide semiconductor films,” General & Introductory Chemistry, vol. 101, no. 11, pp. 1651–1653, 1997.
[10]  M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, “ZnO- and ZnO- core-shell nanowire dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 110, no. 45, pp. 22652–22663, 2006.
[11]  M. Guo, P. Diao, X. Wang, and S. Cai, “The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films,” Journal of Solid State Chemistry, vol. 178, no. 10, pp. 3210–3215, 2005.
[12]  C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured Zno,” Journal of Physical Chemistry B, vol. 105, no. 24, pp. 5585–5588, 2001.
[13]  I. Bedja, Photophysics and photoelectrochemistry studies on nanocrystalline semiconductor systems. Mechanistic studies of photosensitization and modu-lation of electron transfer kinetics, Ph.D. thesis, University of Quebec at Trois-Rivieres, Quebec, Canada, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133