全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

ZASP Interacts with the Mechanosensing Protein Ankrd2 and p53 in the Signalling Network of Striated Muscle

DOI: 10.1371/journal.pone.0092259

Full-Text   Cite this paper   Add to My Lib

Abstract:

ZASP is a cytoskeletal PDZ-LIM protein predominantly expressed in striated muscle. It forms multiprotein complexes and plays a pivotal role in the structural integrity of sarcomeres. Mutations in the ZASP protein are associated with myofibrillar myopathy, left ventricular non-compaction and dilated cardiomyopathy. The ablation of its murine homologue Cypher results in neonatal lethality. ZASP has several alternatively spliced isoforms, in this paper we clarify the nomenclature of its human isoforms as well as their dynamics and expression pattern in striated muscle. Interaction is demonstrated between ZASP and two new binding partners both of which have roles in signalling, regulation of gene expression and muscle differentiation; the mechanosensing protein Ankrd2 and the tumour suppressor protein p53. These proteins and ZASP form a triple complex that appears to facilitate poly-SUMOylation of p53. We also show the importance of two of its functional domains, the ZM-motif and the PDZ domain. The PDZ domain can bind directly to both Ankrd2 and p53 indicating that there is no competition between it and p53 for the same binding site on Ankrd2. However there is competition for this binding site between p53 and a region of the ZASP protein lacking the PDZ domain, but containing the ZM-motif. ZASP is negative regulator of p53 in transactivation experiments with the p53-responsive promoters, MDM2 and BAX. Mutations in the ZASP ZM-motif induce modification in protein turnover. In fact, two mutants, A165V and A171T, were not able to bind Ankrd2 and bound only poorly to alpha-actinin2. This is important since the A165V mutation is responsible for zaspopathy, a well characterized autosomal dominant distal myopathy. Although the mechanism by which this mutant causes disease is still unknown, this is the first indication of how a ZASP disease associated mutant protein differs from that of the wild type ZASP protein.

References

[1]  Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94: 296–305. Review.
[2]  Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 18: 637–706. doi: 10.1146/annurev.cellbio.18.012502.105840
[3]  Sanger JM, Sanger JW (2008) The dynamic Z-band of striated muscle cells. Sci Signal 1: pe37. doi: 10.1126/scisignal.132pe37
[4]  Kn?ll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, et al. (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111: 943–955. doi: 10.1016/s0092-8674(02)01226-6
[5]  Frank D, Kuhn C, Katus HA, Frey N (2006) The sarcomeric Z-disc: a nodal point in signaling disease. J Mol Med 84: 446–468. doi: 10.1007/s00109-005-0033-1
[6]  Faulkner G, Lanfranchi G, Valle G (2001) Telethonin and other new proteins of the Z-disc of skeletal muscle. IUBMB Life 51: 275–282. doi: 10.1080/152165401317190761
[7]  Frank D, Kuhn C, Katus HA, Frey N (2007) Role of the sarcomeric Z-disc in the pathogenesis of cardiomyopathy. Future Cardiol 3: 611–622. doi: 10.2217/14796678.3.6.611
[8]  Sheikh F, Bang ML, Lange S, Chen J (2007) “Z”eroing in on the role of Cypher in striated muscle function, signaling, and human disease. Trends Cardiovasc Med 17: 258–262. doi: 10.1016/j.tcm.2007.09.002
[9]  Faulkner G, Pallavicini A, Formentin E, Comelli A, Ievolella C, et al. (1999) ZASP: a new Z-band alternatively spliced PDZ-motif protein. J Cell Biol 146: 465–475. doi: 10.1083/jcb.146.2.465
[10]  Zhou Q, Ruiz-Lozano P, Martone ME, Chen J (1999) Cypher, a striated muscle restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem. 274: 19807–19813. doi: 10.1074/jbc.274.28.19807
[11]  Passier R, Richardson JA, Olson EN (2000) Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle. Mech Dev 92: 277–284. doi: 10.1016/s0925-4773(99)00330-5
[12]  Toyama R, Kobayashi M, Tomita T, Dawid IB (1998) Expression of LIM-domain binding protein (ldb) genes during zebrafish embryogenesis. Mech Dev 71: 197–200. doi: 10.1016/s0925-4773(97)00202-5
[13]  Zheng M, Cheng H, Li X, Zhang J, Cui L, et al. (2009) Cardiac-specific ablation of Cypher leads to a severe form of Dilated Cardiomyopathy with premature death. Hum Mol Genet 18: 701–713. doi: 10.1093/hmg/ddn400
[14]  van der Meer DLM, Marques IJ, Leito JTD, Besser J, Bakkers J, et al. (2006) Zebrafish cypher is important for somite formation and heart development. Dev Biol 299: 356–372. doi: 10.1016/j.ydbio.2006.07.032
[15]  Jani K, Schock F (2007) ZASP is required for the assembly of functional integrin adhesion sites. J Cell Biol 179: 1583–1597. doi: 10.1083/jcb.200707045
[16]  Benna C, Peron S, Rizzo G, Faulkner G, Megighian A, et al. (2009) Post-transcriptional silencing of the Drosophila homolog of human ZASP: a molecular and functional analysis. Cell Tissue Res 337: 463–476. doi: 10.1007/s00441-009-0813-y
[17]  Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, et al. (2003) Mutations in Cypher/ZASP in patients with Dilated Cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 42: 2014–2027. doi: 10.1016/j.jacc.2003.10.021
[18]  Huang C, Zhou Q, Liang P, Hollander MS, Sheikh F, et al. (2003) Characterization and in vivo functional analysis of splice variants of Cypher. J Biol Chem 278: 7360–7365. doi: 10.1074/jbc.m211875200
[19]  Te Velthuis AJ, Isogai T, Gerrits L, Bagowski CP (2007) Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif. PLoS One 2: e189. doi: 10.1371/journal.pone.0000189
[20]  van Ham M, Hendriks W (2003) PDZ domains-glue and guide. Mol Biol Rep 30: 69–82.
[21]  Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5: 920–931. doi: 10.1038/nrm1499
[22]  Katzemich A, Long JY, Jani K, Lee BR, Sch?ck F (2011) Muscle type-specific expression of Zasp52 isoforms in Drosophila. Gene Expr Patterns 11: 484–490. doi: 10.1016/j.gep.2011.08.004
[23]  Hudson AM, Petrella LN, Tanaka AJ, Cooley L (2008) Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. Dev Biol 314: 329–340. doi: 10.1016/j.ydbio.2007.11.029
[24]  Klaavuniemi T, Kelloniemi A, Ylanne J (2004) The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. J Biol Chem 279: 26402–26410. doi: 10.1074/jbc.m401871200
[25]  Klaavuniemi T, Ylanne J (2006) Zasp/Cypher internal ZM-motif containing fragments are sufficient to colocalize with alpha-actinin–analysis of patient mutations. Exp Cell Res 312: 1299–1311. doi: 10.1016/j.yexcr.2005.12.036
[26]  Au YRA, Atkinson R, Guerrini G, Kelly C, Joseph SR, et al. (2004) Solution structure of ZASP PDZ domain; implications for sarcomere ultrastructure and enigma family redundancy. Structure 12: 611–622. doi: 10.1016/j.str.2004.02.019
[27]  Frey N, Olson EN (2002) Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem 277: 13998–4004. doi: 10.1074/jbc.m200712200
[28]  Von Nandelstadh P, Ismail M, Gardin C, Suila H, Zara I, et al. (2009) A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: a common link for Z-disc myopathies. Mol Cell Biol 29: 822–834. doi: 10.1128/mcb.01454-08
[29]  Xi Y, Ai T, De Lange E, Li Z, Wu G, et al. (2012) Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction. Circ Arrhythm Electrophysiol 5: 1017–1026. doi: 10.1161/circep.111.969220
[30]  Holmes WB, Moncman CL (2007) Nebulette Interacts with Filamin C. Cell Motil Cytoskeleton. 65: 130–142. doi: 10.1002/cm.20249
[31]  Arimura T, Inagaki N, Hayashi T, Shichi D, Sato A, et al. (2009) Impaired binding of ZASP/Cypher with phosphoglucomtase 1 is associated with Dilated Cardiomyopathy. Cardiovasc Res 83: 80–88. doi: 10.1093/cvr/cvp119
[32]  Arimura T, Hayashi T, Terada H, Lee S-Y, Zhou Q, et al. (2004) A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem. 279: 6746–6752. doi: 10.1074/jbc.m311849200
[33]  Theis JL, Bos JM, Bartleson VB, Will ML, Binder J, et al. (2006) Echocardiographic determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun 351: 896–902. doi: 10.1016/j.bbrc.2006.10.119
[34]  Cai H, Yabe I, Sato K, Kano T, Nakamura M, et al. (2012) Clinical, pathological, and genetic mutation analysis of sporadic inclusion body myositis in Japanese people. J Neurol 259: 1913–1922. doi: 10.1007/s00415-012-6439-0
[35]  Selcen D, Engel AG (2005) Mutations in ZASP define a novel form of Muscular Dystrophy in humans. Ann Neurol 57: 269–327. doi: 10.1002/ana.20376
[36]  Griggs R, Vihola A, Hackman P, Talvinen K, Haravuoi H, et al. (2007) Zaspopathy in a large classic late-onset distal myopathy family. Brain 130: 1477–1484. doi: 10.1093/brain/awm006
[37]  Selcen D, Engel AG (2005) Myofibrillar Myopathy. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReview University of Washington, Seattle; 1993–2013. [updated 2012].
[38]  Reits EAJ, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biol 3: E145–E147. doi: 10.1038/35078615
[39]  Frank D, Frey N (2011) Cardiac Z-disc signaling network. J Biol Chem 286: 9897–9904. Review.
[40]  Katzemich A, Liao KA, Czerniecki S, Sch?ck F (2013) Alp/Enigma family proteins cooperate in Z-disc formation and myofibril assembly. PLoS Genet 9: e1003342. doi: 10.1371/journal.pgen.1003342
[41]  Belgrano A, Rakicevic L, Mittempergher L, Campanaro S, Martinelli VC, et al. (2011) Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle. PLoS One 6: e25519. doi: 10.1371/journal.pone.0025519
[42]  Kojic S, Medeot E, Guccione E, Krmac H, Zara I, et al. (2004) The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J Mol Biol 339: 313–325. doi: 10.1016/j.jmb.2004.03.071
[43]  Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, et al. (2000) Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 66: 229–241. doi: 10.1006/geno.2000.6213
[44]  Pallavicini A, Kojic S, Bean C, Vainzof M, Salamon M, et al. (2001) Characterization of human skeletal muscle Ankrd2. Biochem Biophys Res Commun 285: 378–386. doi: 10.1006/bbrc.2001.5131
[45]  Cenni V, Bavelloni A, Beretti F, Tagliavini F, Manzoli L, et al. (2011) Ankrd2/ARPP is a Novel Akt2 Specific Substrate and Regulates Myogenic Differentiation Upon Cellular Exposure to H2O2. Mol Biol Cell 22: 2946–2956. doi: 10.1091/mbc.e10-11-0928
[46]  Kn?ll R, Linke WA, Zou P, Miocic S, Kostin S, et al. (2011) Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circul Res 109: 758–769. doi: 10.1161/circresaha.111.245787
[47]  Vatta M, Kyle WB, Li Z, Valle G, Faulkner G (2013) ZASP8 is a novel isoform expressed in foetal skeletal and heart muscle with postnatal switch to expression in adult heart but at low levels in adult skeletal muscle. Direct Submission GenBank accession number: KF772970.
[48]  Isogai T, Yamamoto J (2007) Homo sapiens cDNA FLJ53288 complete cds, moderately similar to LIM domain binding protein 3. Direct Submission GenBank accession number: AK294696.
[49]  Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNAseq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515. doi: 10.1038/nbt.1621
[50]  Lippincott-Schwartz J, Altan-Bonnet N, Patterson G (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl S7–S14.
[51]  Wang J, Shaner N, Mittal B, Zhou Q, Chen J, et al. (2005) Dynamics of Z-Band Based Proteins in Developing Skeletal Muscle Cells. Cell Motil Cytoskeleton 61: 34–48. doi: 10.1002/cm.20063
[52]  Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci 111: 769–779.
[53]  Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604–609. doi: 10.1038/35007077
[54]  Carrero G, Crawford E, Hendzel MJ, de Vries G (2004) Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events. B Math Biol 66: 1515–1545. doi: 10.1016/j.bulm.2004.02.005
[55]  Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, et al. (2001) Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 115: 605–612. doi: 10.1083/jcb.200107092
[56]  Gu B, Zhu WG (2012) Surf the Post-translational Modification Network of p53 Regulation. Int J Biol Sci 8: 672–684. doi: 10.7150/ijbs.4283
[57]  Braithwaite AW, Del Sal G, Lu X (2006) Some p53-binding proteins that can function as arbiters of life and death. Cell Death and Differ 13: 984–993. doi: 10.1038/sj.cdd.4401924
[58]  Reed JC (1994) Bcl-2 and the regulation of programmed cell death J Cell Biol 124: 1–6. Review.
[59]  Leung MC, Hitchen PG, Ward DG, Messer AE, Marston SB (2013) Z-band alternatively spliced PDZ motif protein (ZASP) is the major O-linked β-N-acetylglucosamine substituted protein in human heart myofibrils. J Biol Chem 288: 4891–4898. doi: 10.1074/jbc.m112.410316
[60]  Vink M, Simonetta M, Transidico P, Ferrari K, Mapelli M, et al. (2006) In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr Biol 16: 755–766. doi: 10.1016/j.cub.2006.03.057
[61]  Lin C, Guo X, Lange S, Liu J, Ouyang K, et al. (2013) Cypher/ZASP Is a Novel A-kinase Anchoring Protein. J Biol Chem 288: 29403–29413. doi: 10.1074/jbc.m113.470708
[62]  Kn?ll R, Buyandelger B (2013) Z-disc transcriptional coupling, sarcomeroptosis and Mechanoptosis. Cell Biochem Biophys 66: 65–71. Review.
[63]  Bean C, Facchinello N, Faulkner G, Lanfranchi G (2008) The effects of Ankrd2 alteration indicate its involvement in cell cycle regulation during muscle differentiation. Biochim Biophys Acta 1783: 1023–1035. doi: 10.1016/j.bbamcr.2008.01.027
[64]  Mohamed JS, Lopez MA, Cox GA, Boriek AM (2013) Ankyrin Repeat Domain Protein 2 and Inhibitor of DNA Binding 3 Cooperatively Inhibit Myoblast Differentiation by Physical Interaction. J Biol Chem 288: 24560–2468. doi: 10.1074/jbc.m112.434423
[65]  Hayashi C, Ono Y, Doi N, Kitamura F, Tagami M, et al. (2008) Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem 283: 14801–14814. doi: 10.1074/jbc.m708262200
[66]  Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307–310. doi: 10.1038/35042675
[67]  Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2: 594–604. doi: 10.1038/nrc864
[68]  Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299. doi: 10.1038/387296a0
[69]  Alarcon-Vargas D, Ronai Z (2002) p53-Mdm2–the affair that never ends. Carcinogenesis 23: 541–547. doi: 10.1093/carcin/23.4.541
[70]  el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, et al. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.
[71]  Nakano K, Vousden KH (2001) PUMA, a novel pro-apoptotic gene, is induced by p53. Mol Cell 7: 683–694. doi: 10.1016/s1097-2765(01)00214-3
[72]  Ho J, Benchimol S (2003) Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408. doi: 10.1038/sj.cdd.4401191
[73]  Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, et al. (2005) Direct p53 Transcriptional Repression: In Vivo Analysis of CCAAT-Containing G2/M Promoters. Mol Cell Biol 25: 3737–3751. doi: 10.1128/mcb.25.9.3737-3751.2005
[74]  Ehrnhoefer DE, Skotte NH, Ladha S, Nguyen YTN, Qiu X, et al. (2014) p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Hum Mol Genet 23: 717–729. doi: 10.1093/hmg/ddt458
[75]  Salem IH, Kamoun F, Louhichi N, Trigui M, Chahrez T, et al. (2012) Impact of single-nucleotide polymorphisms at the TP53-binding and responsive promoter region of BCL2 gene in modulating the phenotypic variability of LGMD2C patients. Mol Biol Rep 39: 7479–7486. doi: 10.1007/s11033-012-1581-4
[76]  Conte M, Vasuri F, Trisolino G, Bellavista E, Santoro A, et al. (2013) Increased Plin2 Expression in Human Skeletal Muscle Is Associated with Sarcopenia and Muscle Weakness. PLOSone 8: e73709. doi: 10.1371/journal.pone.0073709
[77]  Birks EJ, Latif N, Enesa K, Folkvang T, Luong LA, et al. (2008) Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res 79: 472–480. doi: 10.1093/cvr/cvn083
[78]  Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, et al. (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446: 444–448. doi: 10.1038/nature05602
[79]  Dogra C, Srivastava DS, Kumar A (2008) Protein–DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice. Mol Cell Biochem 312: 17–24. doi: 10.1007/s11010-008-9716-6
[80]  Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458: 1127–1130. doi: 10.1038/nature07986
[81]  Stehmeier P, Muller S (2009) Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst) 8: 491–498. doi: 10.1016/j.dnarep.2009.01.002
[82]  Chen L, Chen J (2003) MDM2-ARF complex regulates p53 sumoylation. Oncogene 22: 5348–5357. doi: 10.1038/sj.onc.1206851
[83]  Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH (2011) MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 10: 3176–3188. doi: 10.4161/cc.10.18.17436
[84]  Carter S, Vousden KH (2008) p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle 7: 2519–2528. doi: 10.4161/cc.7.16.6422
[85]  Santiago A, Li D, Zhao LY, Godsey A, Liao D (2013) p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Mol Biol Cell 24: 2739–2752. doi: 10.1091/mbc.e12-10-0771
[86]  Yanku Y, Orian A (2012) Regulation of Protein-Protein Interactions by the SUMO and Ubiquitin Pathways. Protein Interactions. Dr. Jianfeng Cai (Ed.), ISBN: 978–953–51–0244–1, InTech, Available from http://www.intechopen.com/books/protein-?interactions/regulation-of-protein-prote?in-interactions-by-the-sumoand-ubiquitin?-pathways.
[87]  Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. (2004) In vivo activation of the p53 pathway by small-molecule antagonist of MDM2. Science 6: 844–848. doi: 10.1126/science.1092472
[88]  Frey N, Barrientos T, Shelton JM, Frank D, Rütten H, et al. (2004) Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nature Med 10: 1336–1343. doi: 10.1038/nm1132
[89]  Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, et al. (2009) PASS-bis: a bisulfite aligner suitable for whole methylome analysis of Illumina and SOLiD reads. Bioinformatics 25: 967–968. doi: 10.1093/bioinformatics/bts675
[90]  Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. ENBnet 17: 10–12. doi: 10.14806/ej.17.1.200
[91]  Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873–881. doi: 10.1093/bioinformatics/btq057
[92]  Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNAseq. Bioinformatics 27: 2325–2329. doi: 10.1093/bioinformatics/btr355
[93]  Zeng G, Rosenberg SA, Wang R-F (2000) Z-band alternatively spliced PDZ-motif protein ZASP-4 [Homo sapiens]. Direct Submission GenBank accession number: AAQ14316.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133