全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Plasticity of Attentional Functions in Older Adults after Non-Action Video Game Training: A Randomized Controlled Trial

DOI: 10.1371/journal.pone.0092269

Full-Text   Cite this paper   Add to My Lib

Abstract:

A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. Trial Registration ClinicalTrials.gov NCT02007616

References

[1]  Boot VR, Kramer AF, Simons DJ, Fabiani M, Gratton G (2008) The effects of video game playing on attention, memory, and executive control. Acta Psychol 129: 387–398. doi: 10.1016/j.actpsy.2008.09.005
[2]  Green CS, Bavelier D (2003) Action video game modifies visual selective attention. Nature 423: 534–537. doi: 10.1038/nature01647
[3]  Green CS, Bavelier D (2006) Effect of action video games on the spatial distribution of visuospatial attention. J Exp Psychol Human 32: 1465–1478. doi: 10.1037/0096-1523.32.6.1465
[4]  Green CS, Bavelier D (2008) Exercising your brain: A review of human plasticity and training-induced learning. Psychol Aging 23: 692–701. doi: 10.1037/a0014345
[5]  Green CS, Li R, Bavelier D (2010) Perceptual learning during action video game playing. Top Cog Sci 2: 201–216. doi: 10.1111/j.1756-8765.2009.01054.x
[6]  Oei AC, Patterson MD (2013) Enhancing cognition with video games: A multiple game training study. PlosOne 8 (3): e58546 doi:10.1371/journal.pone.0058546.
[7]  Basak C, Boot WR, Voss MW, Kramer AF (2008) Can training in real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging 23: 765–777. doi: 10.1037/a0013494
[8]  Goh JO, An Y, Resnick SM (2012) Differential trajectories of age-related changes in components of executive and memory processes. Psychol Aging 27: 707–719. doi: 10.1037/a0026715
[9]  Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: A view from cognitive neuroscience. Nature Rev Neurosci 5: 87–96. doi: 10.1038/nrn1323
[10]  Park DC, Davidson L, Lautenschlager G, Smith AD, Smith P, et al. (2002) Models of visuo-spatial and verbal memory across the adult lifespan. Psychol Aging 17: 299–320. doi: 10.1037//0882-7974.17.2.299
[11]  Ballesteros S, Bischof GN, Goh JO, Park DC (2013) Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study. Neurobiol Aging 34: 1254–1264. doi: 10.1016/j.neurobiolaging.2012.09.019
[12]  Ballesteros S, Mayas J, Reales JM (2007) Picture priming in aging and dementia. Psicothema 19: 239–244.
[13]  Ballesteros S, Mayas J, Reales JM (2013a) Cognitive function in healthy aging and mild cognitive impaired older adults. Psicothema 25: 18–24.
[14]  Ballesteros S, Reales JM (2004) Intact haptic priming in normal aging and Alzheimer's disease: Evidence for dissociable memory systems. Neuropsychologia 44: 1063–1070. doi: 10.1016/j.neuropsychologia.2003.12.008
[15]  Mitchell DB, Bruss PJ (2003) Age differences in implicit memory: conceptual, perceptual o methodological. Psychol Aging 18: 807–822. doi: 10.1037/0882-7974.18.4.807
[16]  Wiggs C, Weisberg J, Martin A (2006) Repetition priming across the adult lifespan - the long and short of it. Aging, Neurosps Cog 13: 308–325. doi: 10.1080/138255890968718
[17]  Fleischman DA (2007) Repetition priming in aging and AD: an integrative review and future directions. Cortex 43: 889–897. doi: 10.1016/s0010-9452(08)70688-9
[18]  Baltes PB, Lindengerber U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychol Aging 12: 12–21. doi: 10.1037/0882-7974.12.1.12
[19]  Nilsson L-G (2003) Memory function in normal aging. Acta Neurologica Scandinavica 107 (Suppl. 179)7–13. doi: 10.1034/j.1600-0404.107.s179.5.x
[20]  Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103 403–428.
[21]  Park DC, Reuter-Lorenz P (2009) The adaptative brain: Ageing and neurocognitive scaffolding. Annu Rev Psychol 60: 173–196. doi: 10.1146/annurev.psych.59.103006.093656
[22]  Andrés P, Van der Linden M (2000) Age related differences in supervisory attentional system functions. J Gerontol Psychol Sci 35: 373–380.
[23]  Hasher L, Zacks RT (1988) Working memory, comprehension, and aging: A review and a new view. In: Bower GH, editor. The psychology of learning and motivation.Orlando, FL: Academic Press. pp. 193–225.
[24]  Andrés P (2003) Frontal cortex as the central executive of working Memory. Cortex 39: 871–895. doi: 10.1016/s0010-9452(08)70868-2
[25]  Chao L, Knight R (1995) Human prefrontal lesions increase distractibility to irrelevant sensory inputs. NeuroReport 6: 1605–1610. doi: 10.1097/00001756-199508000-00005
[26]  Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35: 73–89. doi: 10.1146/annurev-neuro-062111-150525
[27]  Raz N (2000) Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In: Craik FIM, Salthouse TA, Editors.The handbook of aging and cognition.Mahwah, NJ: Lawrence Erlbaum Associates. pp. 1–90.
[28]  Raz N, Linderberger U, Rodrigue KM, Kennedy KM, Head D, et al. (2005) Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb Cortex 15: 1676–1689. doi: 10.1093/cercor/bhi044
[29]  West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120: 272–292. doi: 10.1037//0033-2909.120.2.272
[30]  Cabeza R, Dennis NA (2013) Frontal lobes and aging: Deterioration and compensation. In: Stuss DT, Knight RT, editors.Principles of Frontal Lobe Function, 2nd Edition. Oxford University Press: New York.
[31]  Greenwood PM (2000) The frontal aging hypothesis evaluated. J Int Neuropsycchol Soc 6(6): 705–26.
[32]  Greenwood PM, Parasuraman R (2010) Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Neurosci 2 (150) . doi: 10.3389/fnagi.2010.00150.
[33]  Hertzog C, Kramer AF, Wilson RS, Lindenberger U (2009) Enrichment effects on adult cognitive development. Psychol Sci Public Interest 9 (1): 1–65. doi: 10.1111/j.1539-6053.2009.01034.x
[34]  Buitenweg JIV, Murre JM, Ridderinkhof KR (2012) Brain training in progress: A review of trainability in healthy seniors. Front Human Neurosci 6: 1831–11. doi: 10.3389/fnhum.2012.00183
[35]  Kueider AM, Parisi JM, Gross AL, Rebok GW (2012) Computerized cognitive training with older adults: A systematic review. PlosOne 7: e40588 doi:10.1371/journal.pone.0040588.
[36]  Thompson G, Foth D (2005) Cognitive-training programs for older adults: What are they and can they enhance mental fitness? Educ Gerontol 31 (8): 603–626. doi: 10.1080/03601270591003364
[37]  Ackerman PL, Kanfer R, Chalderwood C (2010) Use it or lose it? Wii brain exercise practice and reading for domain knowledge. Aging Cognition 25: 753–766. doi: 10.1037/a0019277
[38]  Lee H, Boot WR, Basack C, Voss MW, Prakash RS, et al. (2012) Performance gains from directed training do not transfer to untrained tasks. Acta Psychol 139: 146–158. doi: 10.1016/j.actpsy.2011.11.003
[39]  Toril P, Reales JM, Ballesteros S (submitted) Is videogame training effective to enhance cognitive functions in healthy older adults? A meta-analytic study.
[40]  Andrés P, Parmentier FBR, Escera C (2006) The effect of age on involuntary capture of attention by irrelevant rounds: A test of the frontal hypothesis of age. Neuropsychology 44: 2564–2568. doi: 10.1016/j.neuropsychologia.2006.05.005
[41]  Parmentier FBR, Andrés P (2010) The involuntary capture of attention by sound: Novelty and postnovelty distraction in young and older adults. Exp Psychol 57: 68–76. doi: 10.1027/1618-3169/a000009
[42]  Parmentier FBR, Elford G, Escera C, Andrés P, San Miguel I (2008) The cognitive locus of distraction by acoustic novelty in the cross-modal oddball task. Cognition 106: 408–432. doi: 10.1016/j.cognition.2007.03.008
[43]  Parmentier FBR (2013) The cognitive determinants of behavioral distraction by deviant auditory stimuli: A review. Psychological Research [Epud ahead of print]. doi:10.1007/s00426-013-0534-4.
[44]  Parmentier FBR (2008) Towards a cognitive model of distraction by auditory novelty: The role of involuntary attention capture and semantic processing. Cognition 109: 345–362 doi:10.1016/j.cognition.2008.09.005.
[45]  Parmentier FBR, Turner J, Elsley JV (2011) Distraction by auditory novelty: The course and aftermath of novelty and semantic effects. Exp Psychol 58: 92–101. doi: 10.1027/1618-3169/a000072
[46]  Parmentier FBR, Turner J, Pérez L (2013). A dual contribution to the involuntary semantic processing of unexpected spoken words. J Exp Psychol Gen. doi:10.1037/a0031550.
[47]  Li B, Parmentier FBR, Wang A, Hu W, Zhang M (2013) Behavioral distraction by auditory deviance is mediated by the sound's informational value: Evidence from an auditory discrimination task. Exp Psychol 60: 260–268. doi: 10.1027/1618-3169/a000196
[48]  Ljungberg JK, Parmentier FBR, Leiva A, Vega N (2012) The informational constraints of behavioral distraction by unexpected sounds: The role of event information. J Exp Psychol Learn 38: 1461–1468. doi: 10.1037/a0028149
[49]  Parmentier FBR, Elsley JV, Ljungberg JK (2010) Behavioral distraction by auditory novelty is not only about novelty: The role of the distracter's informational value. Cognition 115: 501–511. doi: 10.1016/j.cognition.2010.03.002
[50]  Bendixen A, Schr?ger E, Winkler I (2009) I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. J Neurosci 29: 8447–8451. doi: 10.1523/jneurosci.1493-09.2009
[51]  Parmentier FBR, Elsley JV, Andrés P, Barceló F (2011) Why are auditory novels distracting? Contrasting the roles of novelty, violation of expectation and stimulus change. Cognition 119: 374–380. doi: 10.1016/j.cognition.2011.02.001
[52]  Schr?ger E, Bendixen A, Trujillo-Barreto NJ, Roeber U (2007) Processing of abstract rule violations in audition. PLoSOne 2: e1131. doi: 10.1371/journal.pone.0001131
[53]  Berti S (2008) Cognitive control after distraction: Event-related brain potentials (ERPs) dissociate between different processes of attentional allocation. Psychophysiology 45: 608–620. doi: 10.1111/j.1469-8986.2008.00660.x
[54]  Berti S, Roeber U Schr?ger E (2004) Bottom-up influences on working memory: Behavioral and electrophysiological distraction varies with distractor strength. Exp Psychol 51: 249–257. doi: 10.1027/1618-3169.51.4.249
[55]  Schr?ger E (1996) A neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cog Neurosci 8: 527–539. doi: 10.1162/jocn.1996.8.6.527
[56]  Schr?ger E (1997) On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 34: 245–257. doi: 10.1111/j.1469-8986.1997.tb02395.x
[57]  Schr?ger E (2005) The mismatch negativity as a tool to study auditory processing. Acta acust united act 91: 490–501.
[58]  Schr?ger E, Wolff C (1998) Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cognitive Brain Res 7: 71–87. doi: 10.1016/s0926-6410(98)00013-5
[59]  N??t?nen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13: 201–288. doi: 10.1017/s0140525x00078407
[60]  N??t?nen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol 118: ; 2544–2590.
[61]  Escera C, Alho K, Winkler I, N?t?n?en R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cognitive Neurosci 10: 590–604. doi: 10.1162/089892998562997
[62]  Berti S, Schr?ger E (2001) A comparison of auditory and visual distraction effects: behavioral and event-related indices. Cognitive Brain Res10: 265–273. doi: 10.1016/s0926-6410(00)00044-6
[63]  Schr?ger E, Giard M-H, Wolff Ch (2000) Auditory distraction: Event-related potential and behavioral indices. Clin Neurophysiol 111: 1450–1460. doi: 10.1016/s1388-2457(00)00337-0
[64]  Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. NeuroReport 12: 2583.2587. doi: 10.1097/00001756-200108080-00058
[65]  Yago E, Escera C, Alho K. Girad M-H, Serra-Grabulosa JM (2003) Spatiotemporal dynamics of the auditory novelty-P3 even-related brain potential. Cognitive Brain Res 16: 383–390. doi: 10.1016/s0926-6410(03)00052-1
[66]  Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13: 25–42. doi: 10.1146/annurev.ne.13.030190.000325
[67]  Berti S, Grunwald M, Schr?ger E (2013) Age dependent changes of distractibility and reorienting of attention revisited: an event-related potential study. Brain Res 1491: 156–166. doi: 10.1016/j.brainres.2012.11.009
[68]  Coull JT, Frith CD, Frackowiak RS, Grasby PM (1996) A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia 34: 1085–1095. doi: 10.1016/0028-3932(96)00029-2
[69]  Folstein MF, Folstein SE, McHugh PR (1975) Mini–mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatric Res 12: 189–1998. doi: 10.1002/(sici)1099-1166(199805)13:5<285::aid-gps753>3.3.co;2-m
[70]  Martínez J, Onís MC, Due?as H, Aguado C, Colomer, et al (2002) The Spanish version of the Yesavage Abbreviated Questionnaire (GDS) to screen depressive dysfunctions in patients older than 65 years. Medifam 12: 620–630.
[71]  Wechsler D (1999) Wechsler adult intelligence scale–third edition - UK. London: The Psychological Corporation.
[72]  Ahveninen J, J??skel?inen IP, Pekkonen E, Hallberg A, Hietanen M, et al. (2000) Increased distractibility by task-irrelevant sound changes in abstinent alcoholics. Clin Exp Res 24: 1850–1854. doi: 10.1111/j.1530-0277.2000.tb01989.x
[73]  Fabiani M, Friedman D (1995) Changes in brain activity patterns in aging: The novelty oddball. Psychophysiology 32(6): 579–94. doi: 10.1111/j.1469-8986.1995.tb01234.x
[74]  Gaeta H, Friedman D, Ritter W, Chen J (2001) An event-related potential evaluation of involuntary attentional shifts in young and older adults. Psychol Aging 16: 55–68. doi: 10.1037/0882-7974.16.1.55
[75]  Mueller V, Brehmer Y, Oertzen TV, Li S, Lindenberger U (2008) Electrophysiological correlates of selective attention: a lifespan comparison. Neuroscience 9 (18) . doi:10.1186/1471-2202-9-18.
[76]  Woods D (1992) Auditory selective attention in middle aged and elderly subjects: An event-related brain potential study. Electroen clin neuro 84: 456–468. doi: 10.1016/0168-5597(92)90033-8
[77]  Festa-Martino E, Ott BR, Heindel WC (2004) Interactions between phasic alerting and spatial orienting: Effects of normal aging and Alzheimer's disease. Neuropsychology 18: 258–268. doi: 10.1037/0894-4105.18.2.258
[78]  Jennings JM, Dagenbach D, Engle CM, Funke LJ (2007) Age-related changes and the attention network task: An examination of alerting, orienting, and executive function. Aging Neuropsychol C 4: 353–369. doi: 10.1080/13825580600788837
[79]  Charlton RA, Barrick TR, McIntyre DJ, Shen Y, O'Sullivan M, et al. (2005) White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology 66: 217–222. doi: 10.1212/01.wnl.0000194256.15247.83
[80]  Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, et al. (1996) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7: 268–282. doi: 10.1093/cercor/7.3.268
[81]  Brehmer Y, Li SC, Müller V, von Oertzzen T, Linderberger U (2007) Memory plasticity across the lifespan: uncovering children's latent potential. Dev Psychol 43: 465–478. doi: 10.1037/0012-1649.43.2.465
[82]  Karbach J, Kray J (2009) How use full executive control training? Age differences in near and far transfer of task- switching training. Dev Sci 12: 978–990. doi: 10.1111/j.1467-7687.2009.00846.x
[83]  Vance DE, Roberson AJ, Mcguinness TM, Fazeli PL (2010) How neuroplasticity and cognitive reserve protect cognitive functioning. J Psychosoc Nurs Ment Health Serv 48 (4): 23–30. doi: 10.3928/02793695-20100302-01
[84]  Nithianantharajah J, Hannan AJ (2009) The neurobiology of brain and cognitive reserve: Mental and physical activity as modulators of brain disorders. Prog Neurobiol 89: 369–382. doi: 10.1016/j.pneurobio.2009.10.001
[85]  Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsych Soc 8: 448–460. doi: 10.1017/s1355617702813248
[86]  Karbach J, Schubert T (2013) Training-induced cognitive and neural plasticity. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2013.00048.
[87]  Kleim JA, Jones TA, Schallert T (2003) Motor enrichment and the induction of plasticity before and after brain injury. Neurochem Res 28: 1757–1769.
[88]  Hampstead BM, Stringer AY, Stilla RF, Giddens M, Sathian K (2012) Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus 22 (16): 1652–1658. doi: 10.1002/hipo.22006
[89]  Rosen AC, Sugiura L, Kramer JH, Whitfield-Gabrieli S, Gabrieli JD (2011) Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. J Alzheimer Dis 26 (Supp 3)349–357.
[90]  Schneiders JA, Opitz B, Tang H, Deng Y, Xie C, et al.. (2012) The impact of auditory working memory training on the fronto-parietal working memory network. Frontiers in Neuroscience. doi:10.3389/fnhum.2012.00173.
[91]  Shipstead Z, Redick TS (2010) Engle,RW (2010) Does working memory training generalize? Psychologica Belgica 50 (3–4): 245–276. doi: 10.5334/pb-50-3-4-245
[92]  Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, et al.. (2012) Brain training game improves executive functions and processing Speedy in the elderly: A randomized controlled trial. PlosOne, 7 (1).
[93]  Stemberg DA, Ballard K, Hardy JL, Katz B, Doraiswamy PM, et al. (2013) The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging. Frontiers in Human Neuroscience 7: 1–10. doi: 10.3389/fnhum.2013.00292
[94]  Ballesteros S, Prieto A, Mayas J, Toril P, Pita C, et al. (2014 pending) Training older adults with non-action video games enhances cognitive functions that decline with aging: A randomized controlled trial. Frontiers in Aging Neuroscience.
[95]  Ballesteros S, Mayas J, Reales JM (2013b) Does a physically active lifestyle attenuate decline in all cognitive functions in old age? Current Aging Sci 6.
[96]  Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: A meta-analytic study. Psycholo Sci 14: 125–130. doi: 10.1111/1467-9280.t01-1-01430
[97]  Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontology Medical Sci 58B: 176–180. doi: 10.1093/gerona/58.2.m176
[98]  Ballesteros S, Peter C, Waterworth EL, Waterworth JA (2012) The role of ICT and networking in healthy aging. The 5th ACM International Conference on Pervasive Technologies Related to Assistive Environments: PETRA 2012 [CDROM]. New York: ACM.
[99]  Peter C, Kreisner A, Schr?ter M, Hyosun K, Bieber G, et al.. (2013) AGNES: Connecting people in a multimodal way. Journal on Multimodal User Interfaces JMUI. doi:10.1007/s12193-013-0118-z.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133