全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Direct Observation of Unstained Biological Specimens in Water by the Frequency Transmission Electric-Field Method Using SEM

DOI: 10.1371/journal.pone.0092780

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scanning electron microscopy (SEM) is a powerful tool for the direct visualization of biological specimens at nanometre-scale resolution. However, images of unstained specimens in water using an atmospheric holder exhibit very poor contrast and heavy radiation damage. Here, we present a new form of microscopy, the frequency transmission electric-field (FTE) method using SEM, that offers low radiation damage and high-contrast observation of unstained biological samples in water. The wet biological specimens are enclosed in two silicon nitride (SiN) films. The metal-coated SiN film is irradiated using a focused modulation electron beam (EB) at a low-accelerating voltage. A measurement terminal under the sample holder detects the electric-field frequency signal, which contains structural information relating to the biological specimens. Our results in very little radiation damage to the sample, and the observation image is similar to the transmission image, depending on the sample volume. Our developed method can easily be utilized for the observation of various biological specimens in water.

References

[1]  Duckett JG, Ligrone R (1995) The formation of catenate foliar gemmae and the origin of oil bodies in the liverwort odontoschisma denudatum (Mart.) Dum. (Jungermanniales) : a light and electron microscope study. Annals of Botany 76: 405–419.
[2]  Motta PM, Makabe S, Naguro T, Correr S (1994) Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch histol cytol 57: 369–394. doi: 10.1679/aohc.57.369
[3]  Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, et al. (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208: 511–516. doi: 10.1006/bbrc.1995.1368
[4]  Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Scanning electron microscopic delineation of bacterial surface topology using cationized ferritin. J Microbiol Meth 7: 233–240. doi: 10.1016/0167-7012(87)90045-5
[5]  Allan-Wojtas P, Truelstrup Hansen L, Paulson AT (2008) Microstructural studies of probiotic bacteria-loaded alginate microcapsules using standard electron microscopy techniques and anhydrous fixation. LWT Food Sci Technol 41: 101–108.
[6]  Richards SR, Turner RJ (1984) A Comparative study of techniques for the examination of biofilms by scanning electron microscopy. Water Res 18: 767–773. doi: 10.1016/0043-1354(84)90173-8
[7]  Nagata F, Ishikawa I (1972) Observation of wet biological materials in a high voltage electron microscope. Jpn J Appl Phys 11: 1239–1244. doi: 10.1143/jjap.11.1239
[8]  Parsons DF (1974) Structure of wet specimens in electron microscopy. Science 186: 407–414. doi: 10.1126/science.186.4162.407
[9]  Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, et al. (2004) Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci USA 101: 3346–3351. doi: 10.1073/pnas.0400088101
[10]  de Jonge N, Peckys DB, Kremers GJ, Piston DW (2009) Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106: 2159–2164. doi: 10.1073/pnas.0809567106
[11]  Glaeser RM (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J Ultrastruct Res 36: 466–482. doi: 10.1016/s0022-5320(71)80118-1
[12]  Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16: 139–150. doi: 10.1016/0304-3991(85)90069-5
[13]  Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35: 399–409. doi: 10.1016/j.micron.2004.02.003
[14]  Inayoshi Y, Minoda H, Arai Y, Nagayama K (2012) Direct observation of biological molecules in liquid by environmental phase-plate transmission electron microscopy. Micron 43: 1091–1098. doi: 10.1016/j.micron.2012.02.001
[15]  Ogura T (2010) Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy. Biochem Biophys Res Commun 391: 198–202. doi: 10.1016/j.bbrc.2009.11.031
[16]  Ogura T (2012) Direct observation of the inner structure of unstained atmospheric cells by low-energy electrons. Meas Sci Technol 23: 085402. doi: 10.1088/0957-0233/23/8/085402
[17]  Ogura T (2008) A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy. Biochem Biophys Res Commun 377: 79–84. doi: 10.1016/j.bbrc.2008.09.097
[18]  Ogura T (2012) High-contrast observation of unstained proteins and viruses by scanning electron microscopy. PloS ONE 7: e46904. doi: 10.1371/journal.pone.0046904
[19]  Boone K, Lewis AM, Holder DS (1994) Imaging of cortical spreading depression by EIT: implications for localization of epileptic foci. Physiol Meas 15: A189–A198. doi: 10.1088/0967-3334/15/2a/024
[20]  McEwan A, Cusick G, Holder DS (2007) A review of errors in multi-frequency EIT instrumentation. Physiol Meas 28: S197–S215. doi: 10.1088/0967-3334/28/7/s15
[21]  Boverman G, Isaacson D, Saulnier GJ, Newell JC (2009) Methods for compensating for variable electrode contact in EIT. IEEE Trans Biomed Eng 56: 2762–2772. doi: 10.1109/tbme.2009.2027129
[22]  Kulkarni R, Kao TJ, Boverman G, Isaacson D, Saulnier GJ, et al. (2009) A two-layered forward model of tissue for electrical impedance tomography. Physiol Meas 30: S19–S34. doi: 10.1088/0967-3334/30/6/s02
[23]  Nguyen DT, Jin C, Thiagalingam A, McEwan AL (2012) A review on electrical impedance tomography for pulmonary perfusion imaging. Physiol Meas 33: 695–706. doi: 10.1088/0967-3334/33/5/695
[24]  Brandis E, Rosencwaig A (1980) Thermal-wave microscopy with electron beams. Appl Phys Lett 37: 98–100. doi: 10.1063/1.91718
[25]  Cargill GS (1980) Ultrasonic imaging in scanning electron microscopy. Nature 286: 691–693. doi: 10.1038/286691a0
[26]  Drouin D, Couture AR, Joly D, Tastet X, Aimez V, et al. (2007) CASINO V2.42 ? A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29: 92–101. doi: 10.1002/sca.20000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133