全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Gallotannin Imposes S Phase Arrest in Breast Cancer Cells and Suppresses the Growth of Triple-Negative Tumors In Vivo

DOI: 10.1371/journal.pone.0092853

Full-Text   Cite this paper   Add to My Lib

Abstract:

Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn) has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1) as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP) injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.

References

[1]  Kurian AW, Fish K, Shema SJ, Clarke CA (2010) Lifetime risks of specific breast cancer subtypes among women in four racial/ethnic groups. Breast Cancer Res 12: R99. doi: 10.1186/bcr2780
[2]  Galanina N, Bossuyt V, Harris LN (2011) Molecular predictors of response to therapy for breast cancer. Cancer J 17: 96–103. doi: 10.1097/ppo.0b013e318212dee3
[3]  Daenen LG, Roodhart JM, van Amersfoort M, Dehnad M, Roessingh W, et al. (2011) Chemotherapy enhances metastasis formation via VEGFR-1-expressing endothelial cells. Cancer Res 71: 6976–6985. doi: 10.1158/0008-5472.can-11-0627
[4]  Yamauchi K, Yang M, Hayashi K, Jiang P, Yamamoto N, et al. (2008) Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy. Cancer Res 68: 516–520. doi: 10.1158/0008-5472.can-07-3063
[5]  Vassileva V, Allen CJ, Piquette-Miller M (2008) Effects of sustained and intermittent paclitaxel therapy on tumor repopulation in ovarian cancer. Mol Cancer Ther 7: 630–637. doi: 10.1158/1535-7163.mct-07-2117
[6]  Wu AH, Butler LM (2011) Green tea and breast cancer. Mol Nutr Food Res 55: 921–930. doi: 10.1002/mnfr.201100006
[7]  Touvier M, Druesne-Pecollo N, Kesse-Guyot E, Andreeva VA, Fezeu L, et al. (2013) Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat 137: 225–236. doi: 10.1007/s10549-012-2323-y
[8]  Sareen D, Darjatmoko SR, Albert DM, Polans AS (2007) Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol Pharmacol 72: 1466–1475. doi: 10.1124/mol.107.039040
[9]  Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB, et al. (2011) Oral administration of penta-O-galloyl-beta-D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 32: 804–811. doi: 10.1093/carcin/bgr015
[10]  Athar M, Khan WA, Mukhtar H (1989) Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res 49: 5784–5788.
[11]  Marienfeld C, Tadlock L, Yamagiwa Y, Patel T (2003) Inhibition of cholangiocarcinoma growth by tannic acid. Hepatology 37: 1097–1104. doi: 10.1053/jhep.2003.50192
[12]  Al-Halabi R, Bou Chedid M, Abou Merhi R, El-Hajj H, Zahr H, et al. (2011) Gallotannin inhibits NFkB signaling and growth of human colon cancer xenografts. Cancer Biol Ther 12: 59–68. doi: 10.4161/cbt.12.1.15715
[13]  Fathers C, Drayton RM, Solovieva S, Bryant HE (2012) Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells. Cell Cycle 11: 990–997. doi: 10.4161/cc.11.5.19482
[14]  Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, et al. (2012) RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J 31: 1865–1878. doi: 10.1038/emboj.2012.47
[15]  Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527. doi: 10.1016/j.ccr.2006.10.008
[16]  Zhang Y, Wen G, Shao G, Wang C, Lin C, et al. (2009) TGFBI deficiency predisposes mice to spontaneous tumor development. Cancer Res 69: 37–44. doi: 10.1158/0008-5472.can-08-1648
[17]  Li B, Wen G, Zhao Y, Tong J, Hei TK (2012) The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression. BMC Cancer 12: 239. doi: 10.1186/1471-2407-12-239
[18]  Joe AK, Liu H, Suzui M, Vural ME, Xiao D, et al. (2002) Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res 8: 893–903.
[19]  Shan J, Zhao W, Gu W (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36: 469–476. doi: 10.1016/j.molcel.2009.10.018
[20]  Duan J, Friedman J, Nottingham L, Chen Z, Ara G, et al. (2007) Nuclear factor-kappaB p65 small interfering RNA or proteasome inhibitor bortezomib sensitizes head and neck squamous cell carcinomas to classic histone deacetylase inhibitors and novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 6: 37–50. doi: 10.1158/1535-7163.mct-05-0285
[21]  Wang LC, Okitsu CY, Zandi E (2005) Tumor necrosis factor alpha-dependent drug resistance to purine and pyrimidine analogues in human colon tumor cells mediated through IKK. J Biol Chem 280: 7634–7644. doi: 10.1074/jbc.m413384200
[22]  Falck J, Petrini JH, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30: 290–294. doi: 10.1038/ng845
[23]  Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, et al. (2003) Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426: 87–91. doi: 10.1038/nature02082
[24]  Beeharry N, Rattner JB, Bellacosa A, Smith MR, Yen TJ (2012) Dose dependent effects on cell cycle checkpoints and DNA repair by bendamustine. PLoS One 7: e40342. doi: 10.1371/journal.pone.0040342
[25]  de Lange J, Verlaan-de Vries M, Teunisse AF, Jochemsen AG (2012) Chk2 mediates RITA-induced apoptosis. Cell Death Differ 19: 980–989. doi: 10.1038/cdd.2011.182
[26]  Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282: 1893–1897. doi: 10.1126/science.282.5395.1893
[27]  Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, et al. (2011) Resveratrol selectively induces DNA Damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res 17: 5402–5411. doi: 10.1158/1078-0432.ccr-11-1072
[28]  Casanova F, Quarti J, da Costa DC, Ramos CA, da Silva JL, et al. (2012) Resveratrol chemosensitizes breast cancer cells to melphalan by cell cycle arrest. J Cell Biochem 113: 2586–2596. doi: 10.1002/jcb.24134
[29]  Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, et al. (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2: 1048–1063. doi: 10.1158/2159-8290.cd-11-0336
[30]  Ramnath N, Khushalani N, Toth K, Litwin AM, Intengan ME, et al. (2005) S-phase modulation by irinotecan: pilot studies in advanced solid tumors. Cancer Chemother Pharmacol 56: 447–454. doi: 10.1007/s00280-004-0951-6
[31]  Wang N, Zhang H, Yao Q, Wang Y, Dai S, et al. (2012) TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer. J Exp Clin Cancer Res 31: 6. doi: 10.1186/1756-9966-31-6
[32]  Ahmed AA, Wang X, Lu Z, Goldsmith J, Le XF, et al. (2011) Modulating microtubule stability enhances the cytotoxic response of cancer cells to Paclitaxel. Cancer Res 71: 5806–5817. doi: 10.1158/0008-5472.can-11-0025
[33]  Irigoyen M, Pajares MJ, Agorreta J, Ponz-Sarvise M, Salvo E, et al. (2010) TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol Cancer 9: 130. doi: 10.1186/1476-4598-9-130
[34]  Ahmed AA, Mills AD, Ibrahim AE, Temple J, Blenkiron C, et al. (2007) The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell 12: 514–527. doi: 10.1016/j.ccr.2007.11.014
[35]  Han T, Shang D, Xu X, Tian Y (2012) Gene expression profiling of the synergy of 5-aza-2′-deoxycytidine and paclitaxel against renal cell carcinoma. World J Surg Oncol 10: 183. doi: 10.1186/1477-7819-10-183
[36]  Wen G, Hong M, Li B, Liao W, Cheng SK, et al. (2011) Transforming growth factor-beta-induced protein (TGFBI) suppresses mesothelioma progression through the Akt/mTOR pathway. Int J Oncol 39: 1001–1009. doi: 10.3892/ijo.2011.1097
[37]  Son HN, Nam JO, Kim S, Kim IS (2013) Multiple FAS1 domains and the RGD motif of TGFBI act cooperatively to bind alphavbeta3 integrin, leading to anti-angiogenic and anti-tumor effects. Biochim Biophys Acta 1833: 2378–2388. doi: 10.1016/j.bbamcr.2013.06.012
[38]  Tumbarello DA, Temple J, Brenton JD (2012) ss3 integrin modulates transforming growth factor beta induced (TGFBI) function and paclitaxel response in ovarian cancer cells. Mol Cancer 11: 36. doi: 10.1186/1476-4598-11-36
[39]  Sharpe R, Pearson A, Herrera-Abreu MT, Johnson D, Mackay A, et al. (2011) FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res 17: 5275–5286. doi: 10.1158/1078-0432.ccr-10-2727
[40]  Velasco-Velazquez MA, Li Z, Casimiro M, Loro E, Homsi N, et al. (2011) Examining the role of cyclin D1 in breast cancer. Future Oncol 7: 753–765. doi: 10.2217/fon.11.56
[41]  Jogie-Brahim S, Feldman D, Oh Y (2009) Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr Rev 30: 417–437. doi: 10.1210/er.2008-0028
[42]  Ibanez de Caceres I, Cortes-Sempere M, Moratilla C, Machado-Pinilla R, Rodriguez-Fanjul V, et al. (2010) IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene 29: 1681–1690. doi: 10.1038/onc.2009.454
[43]  Zeng L, Jarrett C, Brown K, Gillespie KM, Holly JM, et al. (2013) Insulin-like growth factor binding protein-3 (IGFBP-3) plays a role in the anti-tumorigenic effects of 5-Aza-2′-deoxycytidine (AZA) in breast cancer cells. Exp Cell Res 319: 2282–2295. doi: 10.1016/j.yexcr.2013.06.011
[44]  Gorogh T, Beress L, Quabius ES, Ambrosch P, Hoffmann M (2013) Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol Cancer 12: 12. doi: 10.1186/1476-4598-12-12
[45]  Segurado M, Tercero JA (2009) The S-phase checkpoint: targeting the replication fork. Biol Cell 101: 617–627. doi: 10.1042/bc20090053
[46]  Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506. doi: 10.1038/nature01368
[47]  Pan Y, Ren KH, He HW, Shao RG (2009) Knockdown of Chk1 sensitizes human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. Cancer Biol Ther 8: 1559–1566. doi: 10.4161/cbt.8.16.8955
[48]  Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, et al. (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3: 247–258. doi: 10.1016/s1535-6108(03)00048-5
[49]  Wang J, Wiltshire T, Wang Y, Mikell C, Burks J, et al. (2004) ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J Biol Chem 279: 39584–39592. doi: 10.1074/jbc.m400015200
[50]  Ng CP, Lee HC, Ho CW, Arooz T, Siu WY, et al. (2004) Differential mode of regulation of the checkpoint kinases CHK1 and CHK2 by their regulatory domains. J Biol Chem 279: 8808–8819. doi: 10.1074/jbc.m312215200
[51]  Bichel J, Bach A (1968) Investigation on the toxicity of small chronic doses of tannic acid with special reference to possible carcinogenicity. Acta Pharmacol Toxicol (Copenh) 26: 41–45. doi: 10.1111/j.1600-0773.1967.tb00425.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133