全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Divergent Chemosymbiosis-Related Characters in Thyasira cf. gouldi (Bivalvia: Thyasiridae)

DOI: 10.1371/journal.pone.0092856

Full-Text   Cite this paper   Add to My Lib

Abstract:

Within the marine bivalve family Thyasiridae, some species have bacterial chemosymbionts associated with gill epithelial cells while other species are asymbiotic. Although the abundance of symbionts in a particular thyasirid species may vary, the structure of their gills (i.e., their frontal-abfrontal thickening) does not. We examined gill structure in a species tentatively identified as Thyasira gouldi from a Northwest Atlantic fjord (Bonne Bay, Newfoundland) and found remarkable differences among specimens. Some individuals had thickened gill filaments with abundant symbionts, while others had thin filaments and lacked symbionts. We could differentiate symbiotic and asymbiotic specimens based on the size and outline of their shell as well as 18S rRNA, 28S rRNA and CO1 sequences. The wide morphological, genetic and symbiosis-related disparity described herein suggests that chemosymbiosis may influence host divergence, and that Thyasira gouldi forms a cryptic species complex.

References

[1]  Taylor JD, Williams ST, Glover EA (2007) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assoc UK 87: 565–574. doi: 10.1017/s0025315407054409
[2]  Duperron S, Gaudron SM, Rodrigues CF, Cunha MR, Decker C, et al. (2012) An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea. Biogeosciences Discuss 9: 16815–16875. doi: 10.5194/bgd-9-16815-2012
[3]  Southward EC (1986) Gill symbionts in Thyasirids and other bivalve molluscs. J Mar Biol Assoc U K 66: 889–914. doi: 10.1017/s0025315400048517
[4]  Dufour SC (2005) Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biol Bull 208: 200–212. doi: 10.2307/3593152
[5]  Dando PR, Spiro B (1993) Varying nutritional dependence of the thyasirid bivalves Thyasira sarsi and T. equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Mar Ecol Prog Ser 92: 151–158. doi: 10.3354/meps092151
[6]  Fujiwara K, Kato C, Masui N, Fujikura K, Kojima S (2001) Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, Western Pacific. Mar Ecol Prog Ser 214: 151–159. doi: 10.3354/meps214151
[7]  Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve molluscs of the genus Thyasira. J Mar Biol Assoc U K 66: 915–929. doi: 10.1017/s0025315400048529
[8]  Le Pennec M, Diouris M, Herry A (1988) Endocytosis and lysis of bacteria in gill epithelium of Bathymodiolus thermophilus, Thyasira flexuosa and Lucinella divaricata (Bivalve, Molluscs). J Shellfish Res 7: 483–489.
[9]  Dufour SC, Felbeck H (2006) Symbiont abundance in thyasirids (Bivalvia) is related to particulate food and sulphide availability. Mar Ecol Prog Ser 320: 185–194. doi: 10.3354/meps320185
[10]  Coan EV, Scott PV, Bernard FR (2000). Bivalve seashells of western North America: marine bivalve mollusks from arctic Alaska to Baja California. Santa Barbara: Santa Barbara Museum of Natural History Monographs. 764 p.
[11]  Oliver PG, Killeen IJ (2002) The Thyasiridae (Mollusca: Bivalvia) of the British continental shelf and North Sea oil fields: an identification manual. Wales: Studies in Marine Biodiversity and Systematics from the National Museum of Wales. 73 p.
[12]  Ockelmann KW (1958) The zoology of East Greenland: Marine Lamellibranchiata. Medd Gr?nl 122: 1–256.
[13]  Wlodarska-Kowalczuk M (2007) Molluscs in Kongsfjorden (Spitsbergen, Svalbard): A species list and patterns of distribution and diversity. Polar Res 26: 48–63. doi: 10.1111/j.1751-8369.2007.00003.x
[14]  Gould AA (1841) Report on the Invertebrata of Massachusetts, comprising the Mollusca, Crustacea, Annelida and Radiata. Cambridge: Folsom, Wells and Thurston. 373 p.
[15]  Gould AA, Binney WG (1870) Report on the invertebrata of Massachusetts comprising the Mollusca, 2nd edition. Boston: Wright and Potter. 524 p.
[16]  Distel DL, Wood AP (1992) Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J Bacteriol 174: 6317–6320.
[17]  Conan GY, Starr M, Comeau M, Therriault JC, Maynou FX, et al.. (1996) Life history strategies, recruitment fluctuations, and management of the Bonne Bay Fjord Atlantic snow crab (Chionoecetes opilio). In: Baxter B, editor. Proceedings of the international symposium on the biology, management, and economics of crabs from high latitude habitats. Lowell: Alaska Sea Grant College Program Report. pp. 59?97.
[18]  Crampton JS (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28: 179–186. doi: 10.1111/j.1502-3931.1995.tb01611.x
[19]  Delgado-Gonzalo R, Thévenaz P, Seelamantula CS, Unser M (2012) Snakes with an ellipse-reproducing property. IEEE T Image Process 21: 1258–1271. doi: 10.1109/tip.2011.2169975
[20]  Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11: 36–42.
[21]  Iwata H, Ukai Y (2002) SHAPE: A computer program package for quantitative evaluation of biological shapes based on Elliptic Fourier descriptors. J Heredity 93: 384–385. doi: 10.1093/jhered/93.5.384
[22]  Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial. Plymouth: PRIMER-E. 192 p.
[23]  Distel DL, Amin M, Burgoyne A, Linton E, Mamangkey G, et al. (2011) Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Mol Phylogenet Evol 61: 245–254. doi: 10.1016/j.ympev.2011.05.019
[24]  Williams ST, Taylor JD, Glover EA (2004) Molecular phylogeny of the Lucinoidea (Bivalvia): non-monophyly and separate acquisition of bacterial chemosymbiosis. J Mollus Stud 70: 187–202. doi: 10.1093/mollus/70.2.187
[25]  Steiner G, Hammer S (2000). Molecular phylogeny of the Bivalvia inferred from 18S rDNA sequences with particular reference to the Pteriomorphia. In: Harper EM, Taylor JD, Crame JA, editors. The evolutionary biology of the Bivalvia. London: Geological Society Special Publications. pp. 11?29.
[26]  Winnepenninckx B, Reid DG, Backeljau T (1998) Performance of 18S rRNA in littorinid phylogeny (Gastropoda: Caenogastropoda). J Mol Evol 47: 586–596. doi: 10.1007/pl00006415
[27]  Williams ST, Reid DG, Littlewood DTJ (2003) A molecular phylogeny of the Littorininae (Gastropoda: Littorinidae): unequal evolutionary rates, morphological parallelism, and biogeography of the southern ocean. Mol Phylogenet Evol 28: 60–86. doi: 10.1016/s1055-7903(03)00038-1
[28]  Littlewood DTJ, Curini-Galletti M, Herniou EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol Phylogenet Evol 16: 449–466. doi: 10.1006/mpev.2000.0802
[29]  Layton K (2012) Examining patterns of genetic variation in Canadian marine molluscs through DNA barcodes. MSc Thesis, University of Guelph, Canada.
[30]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/s0022-2836(05)80360-2
[31]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[32]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. doi: 10.1093/nar/22.22.4673
[33]  Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552. doi: 10.1093/oxfordjournals.molbev.a026334
[34]  Neumann D, Kappes H (2003) On the growth of bivalve gills initiated from a lobule-producing budding zone. Biol Bull 205: 73–82. doi: 10.2307/1543447
[35]  Cannuel R, Beninger PG, McCombie G, Boudry P (2009) Gill development and its functional and evolutionary implications in the blue mussel Mytilus edulis (Bivalvia: Mytilidae). Biol Bull 217: 173–188.
[36]  Gros O, Frenkiel L, Moueza M (1998) Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae). Inv Rep Dev 34: 219–231. doi: 10.1080/07924259.1998.9652656
[37]  Montgomery MK, McFall-Ngai M (1994) Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120: 1719–1729.
[38]  Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K (2011) Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Nat Acad Sci U S A 108 Suppl 14570–4577. doi: 10.1073/pnas.1000072107
[39]  Goffredi SK, Barry JP (2002) Species-specific variation in sulfide physiology between closely related Vesicomyid clams. Mar Ecol Prog Ser 225: 227–238. doi: 10.3354/meps225227
[40]  Payne CM, Allen JA (1991) The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean. Phil Trans Biol Sci 334: 481–562. doi: 10.1098/rstb.1991.0128
[41]  Dufour SC, Felbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426: 65–67. doi: 10.1038/nature02095
[42]  Dando PR, Southward AJ, Southward EC (2004) Rates of sediment sulphide oxidation by the bivalve mollusc Thyasira sarsi. Mar Ecol Prog Ser 280: 181–187. doi: 10.3354/meps280181
[43]  Brissac T, Rodrigues CF, Gros O, Duperron S (2011) Characterization of bacterial symbioses in Myrtea sp. (Bivalvia: Lucinidae) and Thyasira sp. (Bivalvia: Thyasiridae) from a cold seep in the Eastern Mediterranean: identification of two bivalves and their bacterial symbionts. Mar Ecol 32: 198–210. doi: 10.1111/j.1439-0485.2010.00413.x
[44]  Blacknell WM, Ansell AD (1974) The direct development of bivalve Thyasira gouldi (Philippi). Thalassia Jugoslav 10: 23–43.
[45]  Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24: 189–216. doi: 10.1146/annurev.es.24.110193.001201
[46]  Gardner JPA (1994) The Mytilus edulis species complex in southwest England: multi-locus heterozygosity, background genotype and a fitness correlate. Biochem Syst Ecol 22: 1–11. doi: 10.1016/0305-1978(94)90109-0
[47]  Gardner JPA (1996) The Mytilus edulis species complex in southwest England: effects of hybridization and introgression upon interlocus associations and morphometric variation. Mar Biol 125: 385–399. doi: 10.1007/bf00346319
[48]  Mikkelsen NT (2011) Speciation in modern marine bivalves (Mollusca: Bivalvia): insights from the published record. Am Malacol Bull 29: 217–245. doi: 10.4003/006.029.0212
[49]  Vrijenhoek RC, Schutz SJ, Gustafson RG, Lutz RA (1994) Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep-Sea Res 41: 1171–1189. doi: 10.1016/0967-0637(94)90039-6
[50]  Goffredi SK, Hurtado LA, Hallam SJ, Vrijenhoek RC (2003) Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “Pacifica/Lepta” species complex. Mar Biol 142: 311–320.
[51]  Taylor JD, Glover EA (2005) Cryptic diversity of chemosymbiotic bivalves: a systematic revision of worldwide Anodontia (Mollusca: Bivalvia: Lucinidae). Syst Biodivers 3: 281–338. doi: 10.1017/s1477200005001672
[52]  Gros O, Darrasse A, Durand P, Frenckiel L, Mou?za M (1996) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microb 62: 2324–2330.
[53]  Nussbaumer AD, Fisher CR, Bright M (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441: 35–348. doi: 10.1038/nature04793

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133