[1] | Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nature nanotechnology 6: 615–624 doi:10.1038/NNANO. 2011.129.
|
[2] | Dekker C (2007) Solid-state nanopores. Nature nanotechnology 2: 209–215 doi:10.1038/nnano.2007.27.
|
[3] | Branton D, Deamer DW, Marziali A, Bayley H, Benner S a, et al. (2008) The potential and challenges of nanopore sequencing. Nature biotechnology 26: 1146–1153 doi:10.1038/nbt.1495.
|
[4] | Kasianowicz JJ, Robertson JWF, Chan ER, Reiner JE, Stanford VM (2008) Nanoscopic porous sensors. Annual review of analytical chemistry (Palo Alto, Calif) 1: 737–766 doi:10.1146/annurev.anchem.1.031207.112818.
|
[5] | Bezrukov SM, Vodyanoy I, Parsegian VA (1994) Counting polymers moving through a single ion channel. Nature 370: 279–281. doi: 10.1038/370279a0
|
[6] | Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America 93: 13770–13773. doi: 10.1073/pnas.93.24.13770
|
[7] | Li J, Stein D, McMullan C, Branton D, Aziz MJ, et al. (2001) Ion-beam sculpting at nanometre length scales. Nature 412: 166–169 doi:10.1038/35084037.
|
[8] | Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nature materials 2: 537–540 doi:10.1038/nmat941.
|
[9] | Storm a J, Chen JH, Ling XS, Zandbergen HW, Dekker C (2005) Electron-beam-induced deformations of SiO[sub 2] nanostructures. Journal of Applied Physics 98: 014307 doi:10.1063/1.1947391.
|
[10] | Kuan AT, Golovchenko JA (2012) Nanometer-thin solid-state nanopores by cold ion beam sculpting. Applied physics letters 100: 213104–2131044 doi:10.1063/1.4719679.
|
[11] | Russo CJ, Golovchenko JA (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proceedings of the National Academy of Sciences of the United States of America 109: 5953–5957 doi:10.1073/pnas.1119827109.
|
[12] | Yang J, Ferranti DC, Stern L a, Sanford C a, Huang J, et al. (2011) Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22: 285310 doi:10.1088/0957-4484/22/28/285310.
|
[13] | Miles BN, Ivanov AP, Wilson KA, Do?an F, Japrung D, et al. (2013) Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chemical Society reviews 42: 15–28 doi:10.1039/c2cs35286a.
|
[14] | Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton J-M, Pelta J (2012) Sensing Proteins through Nanopores: Fundamental to Applications. ACS chemical biology 7: 1935–1949 doi:10.1021/cb300449t.
|
[15] | Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL (2012) Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature methods 9: 487–492 doi:10.1038/nmeth.1932.
|
[16] | Jain T, Guerrero RJS, Aguilar CA, Karnik R (2013) Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Analytical chemistry 85: 3871–3878 doi:10.1021/ac302972c.
|
[17] | Tabard-Cossa V (2013) Instrumentation for Low-Noise High-Bandwidth Nanopore Recording. In: Edel J, Albrecht T, editors. Engineered Nanopores for Bioanalytical Applications. Elsevier. pp. 59–88.
|
[18] | Frenkel J (1938) On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Physical Review 54: 647–648 doi:10.1103/PhysRev.54.647.
|
[19] | Habermehl S, Apodaca RT, Kaplar RJ (2009) On dielectric breakdown in silicon-rich silicon nitride thin films. Applied Physics Letters 94: 012905 doi:10.1063/1.3065477.
|
[20] | Jeong DS, Hwang CS (2005) Tunneling-assisted Poole-Frenkel conduction mechanism in HfO[sub 2] thin films. Journal of Applied Physics 98: 113701 doi:10.1063/1.2135895.
|
[21] | Kimura M, Ohmi T (1996) Conduction mechanism and origin of stress-induced leakage current in thin silicon dioxide films. Journal of Applied Physics 80: 6360 doi:10.1063/1.363655.
|
[22] | Lee S, An R, Hunt AJ (2010) Liquid glass electrodes for nanofluidics. Nature nanotechnology 5: 412–416 doi:10.1038/nnano.2010.81.
|
[23] | Beamish E, Kwok H, Tabard-Cossa V, Godin M (2012) Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 23: 405301 doi:10.1088/0957-4484/23/40/405301.
|
[24] | Beamish E, Kwok H, Tabard-Cossa V, Godin M (2013) Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores. Journal of visualized experiments: JoVE: e51081. doi:10.3791/51081.
|
[25] | Vodyanoy I, Bezrukov SM (1992) Sizing of an ion pore by access resistance measurements. Biophysical journal 62: 10–11 doi:10.1016/S0006-3495(92)81762-9.
|
[26] | Kowalczyk SW, Grosberg AY, Rabin Y, Dekker C (2011) Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22: 315101 doi:10.1088/0957-4484/22/31/315101.
|
[27] | Frament CM, Dwyer JR (2012) Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. The Journal of Physical Chemistry C 116: 23315–23321 doi:10.1021/jp305381j.
|
[28] | Kosińska ID (2006) How the asymmetry of internal potential influences the shape of I-V characteristic of nanochannels. The Journal of chemical physics 124: 244707 doi:10.1063/1.2212394.
|
[29] | Tabard-Cossa V, Trivedi D, Wiggin M, Jetha NN, Marziali A (2007) Noise analysis and reduction in solid-state nanopores. Nanotechnology 18: 305505 doi:10.1088/0957-4484/18/30/305505.
|
[30] | Smeets RMM, Keyser UF, Dekker NH, Dekker C (2008) Noise in solid-state nanopores. Proceedings of the National Academy of Sciences of the United States of America 105: 417–421 doi:10.1073/pnas.0705349105.
|
[31] | Thompson GE, Wood GC (1981) Porous anodic film formation on aluminium. Nature 290: 230–232 doi:10.1038/290230a0.
|
[32] | Létant SE, Hart BR, Van Buuren AW, Terminello LJ (2003) Functionalized silicon membranes for selective bio-organism capture. Nature materials 2: 391–395 doi:10.1038/nmat888.
|
[33] | Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: A review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23: 877 doi:10.1116/1.1926293.
|
[34] | Lombardo S, Stathis JH, Linder BP, Pey KL, Palumbo F, et al. (2005) Dielectric breakdown mechanisms in gate oxides. Journal of Applied Physics 98: 121301 doi:10.1063/1.2147714.
|
[35] | McPherson JW, Mogul HC (1998) Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO[sub 2] thin films. Journal of Applied Physics 84: 1513 doi:10.1063/1.368217.
|
[36] | DiMaria DJ, Cartier E, Arnold D (1993) Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon. Journal of Applied Physics 73: 3367 doi:10.1063/1.352936.
|
[37] | Liu H, Steigerwald ML, Nuckolls C (2009) Electrical double layer catalyzed wet-etching of silicon dioxide. Journal of the American Chemical Society 131: 17034–17035 doi:10.1021/ja903333s.
|
[38] | Jamasb S, Collins S, Smith RL (1998) A physical model for drift in pH ISFETs. Sensors and Actuators B: Chemical 49: 146–155. doi: 10.1016/s0925-4005(98)00040-9
|
[39] | Chen P, Gu J, Brandin E, Kim Y-R, Wang Q, et al. (2004) Probing Single DNA Molecule Transport Using Fabricated Nanopores. Nano Letters 4: 2293–2298 doi:10.1021/nl048654j.
|
[40] | Fologea D, Brandin E, Uplinger J, Branton D, Li J (2007) DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28: 3186–3192. doi: 10.1002/elps.200700047
|
[41] | Li J, Gershow M, Stein D, Brandin E, Golovchenko J a (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nature materials 2: 611–615 doi:10.1038/nmat965.
|