全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Nanopore Fabrication by Controlled Dielectric Breakdown

DOI: 10.1371/journal.pone.0092880

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanofabrication techniques for achieving dimensional control at the nanometer scale are generally equipment-intensive and time-consuming. The use of energetic beams of electrons or ions has placed the fabrication of nanopores in thin solid-state membranes within reach of some academic laboratories, yet these tools are not accessible to many researchers and are poorly suited for mass-production. Here we describe a fast and simple approach for fabricating a single nanopore down to 2-nm in size with sub-nm precision, directly in solution, by controlling dielectric breakdown at the nanoscale. The method relies on applying a voltage across an insulating membrane to generate a high electric field, while monitoring the induced leakage current. We show that nanopores fabricated by this method produce clear electrical signals from translocating DNA molecules. Considering the tremendous reduction in complexity and cost, we envision this fabrication strategy would not only benefit researchers from the physical and life sciences interested in gaining reliable access to solid-state nanopores, but may provide a path towards manufacturing of nanopore-based biotechnologies.

References

[1]  Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nature nanotechnology 6: 615–624 doi:10.1038/NNANO. 2011.129.
[2]  Dekker C (2007) Solid-state nanopores. Nature nanotechnology 2: 209–215 doi:10.1038/nnano.2007.27.
[3]  Branton D, Deamer DW, Marziali A, Bayley H, Benner S a, et al. (2008) The potential and challenges of nanopore sequencing. Nature biotechnology 26: 1146–1153 doi:10.1038/nbt.1495.
[4]  Kasianowicz JJ, Robertson JWF, Chan ER, Reiner JE, Stanford VM (2008) Nanoscopic porous sensors. Annual review of analytical chemistry (Palo Alto, Calif) 1: 737–766 doi:10.1146/annurev.anchem.1.031207.112818.
[5]  Bezrukov SM, Vodyanoy I, Parsegian VA (1994) Counting polymers moving through a single ion channel. Nature 370: 279–281. doi: 10.1038/370279a0
[6]  Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America 93: 13770–13773. doi: 10.1073/pnas.93.24.13770
[7]  Li J, Stein D, McMullan C, Branton D, Aziz MJ, et al. (2001) Ion-beam sculpting at nanometre length scales. Nature 412: 166–169 doi:10.1038/35084037.
[8]  Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nature materials 2: 537–540 doi:10.1038/nmat941.
[9]  Storm a J, Chen JH, Ling XS, Zandbergen HW, Dekker C (2005) Electron-beam-induced deformations of SiO[sub 2] nanostructures. Journal of Applied Physics 98: 014307 doi:10.1063/1.1947391.
[10]  Kuan AT, Golovchenko JA (2012) Nanometer-thin solid-state nanopores by cold ion beam sculpting. Applied physics letters 100: 213104–2131044 doi:10.1063/1.4719679.
[11]  Russo CJ, Golovchenko JA (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proceedings of the National Academy of Sciences of the United States of America 109: 5953–5957 doi:10.1073/pnas.1119827109.
[12]  Yang J, Ferranti DC, Stern L a, Sanford C a, Huang J, et al. (2011) Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22: 285310 doi:10.1088/0957-4484/22/28/285310.
[13]  Miles BN, Ivanov AP, Wilson KA, Do?an F, Japrung D, et al. (2013) Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chemical Society reviews 42: 15–28 doi:10.1039/c2cs35286a.
[14]  Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton J-M, Pelta J (2012) Sensing Proteins through Nanopores: Fundamental to Applications. ACS chemical biology 7: 1935–1949 doi:10.1021/cb300449t.
[15]  Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL (2012) Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature methods 9: 487–492 doi:10.1038/nmeth.1932.
[16]  Jain T, Guerrero RJS, Aguilar CA, Karnik R (2013) Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Analytical chemistry 85: 3871–3878 doi:10.1021/ac302972c.
[17]  Tabard-Cossa V (2013) Instrumentation for Low-Noise High-Bandwidth Nanopore Recording. In: Edel J, Albrecht T, editors. Engineered Nanopores for Bioanalytical Applications. Elsevier. pp. 59–88.
[18]  Frenkel J (1938) On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Physical Review 54: 647–648 doi:10.1103/PhysRev.54.647.
[19]  Habermehl S, Apodaca RT, Kaplar RJ (2009) On dielectric breakdown in silicon-rich silicon nitride thin films. Applied Physics Letters 94: 012905 doi:10.1063/1.3065477.
[20]  Jeong DS, Hwang CS (2005) Tunneling-assisted Poole-Frenkel conduction mechanism in HfO[sub 2] thin films. Journal of Applied Physics 98: 113701 doi:10.1063/1.2135895.
[21]  Kimura M, Ohmi T (1996) Conduction mechanism and origin of stress-induced leakage current in thin silicon dioxide films. Journal of Applied Physics 80: 6360 doi:10.1063/1.363655.
[22]  Lee S, An R, Hunt AJ (2010) Liquid glass electrodes for nanofluidics. Nature nanotechnology 5: 412–416 doi:10.1038/nnano.2010.81.
[23]  Beamish E, Kwok H, Tabard-Cossa V, Godin M (2012) Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 23: 405301 doi:10.1088/0957-4484/23/40/405301.
[24]  Beamish E, Kwok H, Tabard-Cossa V, Godin M (2013) Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores. Journal of visualized experiments: JoVE: e51081. doi:10.3791/51081.
[25]  Vodyanoy I, Bezrukov SM (1992) Sizing of an ion pore by access resistance measurements. Biophysical journal 62: 10–11 doi:10.1016/S0006-3495(92)81762-9.
[26]  Kowalczyk SW, Grosberg AY, Rabin Y, Dekker C (2011) Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22: 315101 doi:10.1088/0957-4484/22/31/315101.
[27]  Frament CM, Dwyer JR (2012) Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits. The Journal of Physical Chemistry C 116: 23315–23321 doi:10.1021/jp305381j.
[28]  Kosińska ID (2006) How the asymmetry of internal potential influences the shape of I-V characteristic of nanochannels. The Journal of chemical physics 124: 244707 doi:10.1063/1.2212394.
[29]  Tabard-Cossa V, Trivedi D, Wiggin M, Jetha NN, Marziali A (2007) Noise analysis and reduction in solid-state nanopores. Nanotechnology 18: 305505 doi:10.1088/0957-4484/18/30/305505.
[30]  Smeets RMM, Keyser UF, Dekker NH, Dekker C (2008) Noise in solid-state nanopores. Proceedings of the National Academy of Sciences of the United States of America 105: 417–421 doi:10.1073/pnas.0705349105.
[31]  Thompson GE, Wood GC (1981) Porous anodic film formation on aluminium. Nature 290: 230–232 doi:10.1038/290230a0.
[32]  Létant SE, Hart BR, Van Buuren AW, Terminello LJ (2003) Functionalized silicon membranes for selective bio-organism capture. Nature materials 2: 391–395 doi:10.1038/nmat888.
[33]  Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: A review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23: 877 doi:10.1116/1.1926293.
[34]  Lombardo S, Stathis JH, Linder BP, Pey KL, Palumbo F, et al. (2005) Dielectric breakdown mechanisms in gate oxides. Journal of Applied Physics 98: 121301 doi:10.1063/1.2147714.
[35]  McPherson JW, Mogul HC (1998) Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO[sub 2] thin films. Journal of Applied Physics 84: 1513 doi:10.1063/1.368217.
[36]  DiMaria DJ, Cartier E, Arnold D (1993) Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon. Journal of Applied Physics 73: 3367 doi:10.1063/1.352936.
[37]  Liu H, Steigerwald ML, Nuckolls C (2009) Electrical double layer catalyzed wet-etching of silicon dioxide. Journal of the American Chemical Society 131: 17034–17035 doi:10.1021/ja903333s.
[38]  Jamasb S, Collins S, Smith RL (1998) A physical model for drift in pH ISFETs. Sensors and Actuators B: Chemical 49: 146–155. doi: 10.1016/s0925-4005(98)00040-9
[39]  Chen P, Gu J, Brandin E, Kim Y-R, Wang Q, et al. (2004) Probing Single DNA Molecule Transport Using Fabricated Nanopores. Nano Letters 4: 2293–2298 doi:10.1021/nl048654j.
[40]  Fologea D, Brandin E, Uplinger J, Branton D, Li J (2007) DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28: 3186–3192. doi: 10.1002/elps.200700047
[41]  Li J, Gershow M, Stein D, Brandin E, Golovchenko J a (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nature materials 2: 611–615 doi:10.1038/nmat965.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133