全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Chaos and Robustness in a Single Family of Genetic Oscillatory Networks

DOI: 10.1371/journal.pone.0090666

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback.

References

[1]  Ko C, Takahashi J (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15: R271–R277. doi: 10.1093/hmg/ddl207
[2]  Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100: 71–78. doi: 10.1016/s0092-8674(00)81684-0
[3]  Ma L, Wagner J, Rice J, Hu W, Levine A, et al. (2005) A plausible model for the digital response of p53 to dna damage. P Natl Acad Sci USA 102: 14266–14271. doi: 10.1073/pnas.0501352102
[4]  Tsaneva-Atanasova K, Zimliki C, Bertram R, Sherman A (2006) Di_usion of calcium and metabo- lites in pancreatic islets: Killing oscillations with a pitchfork. Biophys J 90: 3434–3446. doi: 10.1529/biophysj.105.078360
[5]  Kaern M, Menzinger M, Satnoianu R, Hunding A (2002) Chemical waves in open ows of active media: Their relevance to axial segmentation in biology. Faraday Discuss 120: 295–312. doi: 10.1039/b103244p
[6]  Pourquie O (2003) The segmentation clock: Converting embryonic time into spatial pattern. Science 301: 328–330. doi: 10.1126/science.1085887
[7]  Atkinson M, Savageau M, Myers J, Ninfa A (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in escherichia coli. Cell 113: 597–607. doi: 10.1016/s0092-8674(03)00346-5
[8]  Gardner T, Cantor R, Collins J (2000) Construction of a genetic toggle switch in escherichia coli. Nature 403: 339–342.
[9]  Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338. doi: 10.1038/35002125
[10]  Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405: 590–593. doi: 10.1038/35014651
[11]  Sprinzak D, Elowitz M (2005) Reconstruction of genetic circuits. Nature 438: 443–448. doi: 10.1038/nature04335
[12]  Hasty J, McMillen D, Collins J (2002) Engineered gene circuits. Nature 420: 224–230. doi: 10.1038/nature01257
[13]  Kholodenko B (2006) Cell-signaling dynamics in time and space. Nat Rev Mol Cell Bio 7: 165–176. doi: 10.1038/nrm1838
[14]  Tyson J, Chen K, Novak B (2003) Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221–231. doi: 10.1016/s0955-0674(03)00017-6
[15]  Hasty F, Isaacs F, Dolin M, McMillen D, Colllins J (2001) Designer gene networks: Towards fundamental cellular control. Chaos 11: 207–220. doi: 10.1063/1.1345702
[16]  Purcell O, Savery N, Grierson C (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7: 1503–1524. doi: 10.1098/rsif.2010.0183
[17]  Novak B, Tyson J (2008) Design principles of biochemical oscillators. Nat Rev mol Cell Bio 9: 981–991. doi: 10.1038/nrm2530
[18]  Strogatz S (1994) Nonlinear Dynamics and Chaos. Boulder, CO: Westview Press.
[19]  Mackey M, Glass L (1997) Oscillation and chaos in physiological control systems. Science 197: 287–289. doi: 10.1126/science.267326
[20]  Martin A, Ruan S (2001) Predeator-prey models with delay and prey harvesting. J Math Biol 43: 247–267. doi: 10.1007/s002850100095
[21]  Raghothama A, Narayanan S (2002) Periodic response and chaos in nonlinear systems with para-metric excitation and time delay. Nonlinear Dynam 27: 341–365.
[22]  Smolen P, Baxter D, Byrne J (2002) A reduced model clarifies the role of feedback loops and time delays in the drosophila circadian oscillator. Biophys J 83: 2349–2359. doi: 10.1016/s0006-3495(02)75249-1
[23]  Stricker J, Cookson S, Bennett M, Mather W, Tsimring L, et al. (2008) A fast, robust and tunable synthetic gene oscillator. NAture 456: 516–520. doi: 10.1038/nature07389
[24]  Lewis J (2003) Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator. Current Biology 13: 1398–1408. doi: 10.1016/s0960-9822(03)00534-7
[25]  Hegger R, Kantz H, Schreiber T (1999) Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9: 413–435. doi: 10.1063/1.166424
[26]  Abramowitz A, Stegun IA, editors (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications.
[27]  Theiler J (1990) Estimating fractal dimension. Journal of the Optical Society of America A 6: 1055–1073. doi: 10.1364/josaa.7.001055
[28]  Pittendrigh C (1954) On temperature independence in the clock system controlling emergence time in drosophila. P Natl Acad Sci USA 40: 1018–1029. doi: 10.1073/pnas.40.10.1018
[29]  Hastings J, Sweeney B (1957) On the mechanism of temperature independence in a biological clock. P Natl Acad Sci USA 43: 804–811. doi: 10.1073/pnas.43.9.804
[30]  Tsai T, Choi Y, Ma W, Pomerening J, Tang C, et al. (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321: 126–129. doi: 10.1126/science.1156951

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133