全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Orally Available, Synthetic Ether Lipid Edelfosine Inhibits T Cell Proliferation and Induces a Type I Interferon Response

DOI: 10.1371/journal.pone.0091970

Full-Text   Cite this paper   Add to My Lib

Abstract:

The drug edelfosine is a synthetic analog of 2-lysophosphatidylcholine. Edelfosine is incorporated by highly proliferating cells, e.g. activated immune cells. It acts on cellular membranes by selectively aggregating the cell death receptor Fas in membrane rafts and interference with phosphatidylcholine (PC) synthesis with subsequent induction of apoptosis. Edelfosine has been proposed for the treatment of autoimmune diseases like multiple sclerosis (MS). Earlier studies on the animal model of MS, experimental autoimmune encephalomyelitis (EAE), have generated first evidence for the efficacy of edelfosine treatment. However, it is unknown if the previously described mechanisms for edelfosine action, which are derived from in vitro studies, are solely responsible for the amelioration of EAE or if edelfosine may exert additional effects, which may be beneficial in the context of autoimmunity. Since it was the purpose of our studies to assess the potential usefulness of edelfosine for the treatment of MS, we examined its mechanism/s of action on immune functions in human T cells. Low doses of edelfosine led to a decrease in homeostatic proliferation, and further studies of the mechanism/s of action by genome-wide transcriptional profiling showed that edelfosine reduces the expression of MHC class II molecules, of molecules involved in MHC class II-associated processing and presentation, and finally upregulated a series of type I interferon-associated genes. The inhibition of homeostatic proliferation, as well as the effects on MHC class II expression and –presentation, and the induction of type I interferon-associated genes are novel and interesting in the context of developing edelfosine for clinical use in MS and possibly also other T cell-mediated autoimmune diseases.

References

[1]  Kny G (1969) über Lysolecithin-Analoga - Synthese und biologische Eigenschaften.
[2]  Andreesen R, Modolell M, Weltzien HU, Munder PG (1980) Alkyl-lysophospholipid induced suppression of human lymphocyte response to mitogens and selective killing of lymphoblasts. Immunobiology 156: 498–508. doi: 10.1016/s0171-2985(80)80083-0
[3]  Mollinedo F, Martínez-Dalmau R, Modolell M (1993) Early and selective induction of apoptosis in human leukemic cells by the alkyl-lysophospholipid ET-18-OCH3. Biochem Biophys Res Commun 192: 603–609. doi: 10.1006/bbrc.1993.1458
[4]  Cabaner C, Gajate C, Macho A, Munoz E, Modolell M, et al. (1999) Induction of apoptosis in human mitogen-activated peripheral blood T-lymphocytes by the ether phospholipid ET-18-OCH3: Involvement of the Fas receptor/ligand system. Br J Pharmacol 813–825. doi: 10.1038/sj.bjp.0702606
[5]  Gajate C, Del Canto-Ja?ez E, Acu?a AU, Amat-Guerri F, Geijo E, et al. (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200: 353–365. doi: 10.1084/jem.20040213
[6]  Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS One 4: e5044. doi: 10.1371/journal.pone.0005044
[7]  Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-p?hosphocholineinhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 270: 7757–7764. doi: 10.1074/jbc.270.13.7757
[8]  Van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277: 39541–39547. doi: 10.1074/jbc.m203176200
[9]  Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3- phosphocholine. J Biol Chem 270: 11612–11618. doi: 10.1074/jbc.270.19.11612
[10]  Mollinedo F, Fernández-Luna JL, Gajate C, Martín-Martín B, Benito A, et al. (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 57: 1320–1328.
[11]  Zerp SF, Vink SR, Ruiter GA, Koolwijk P, Peters E, et al. (2008) Alkylphospholipids inhibit capillary-like endothelial tube formation in vitro: antiangiogenic properties of a new class of antitumor agents. Anticancer Drugs 19: 65–75. doi: 10.1097/cad.0b013e3282f16d36
[12]  Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23: 683–747. doi: 10.1146/annurev.immunol.23.021704.115707
[13]  Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, Patsopoulos NA, et al. (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–219.
[14]  Jersild C, Fog T, Hansen GS, Thomsen M, Svejgaard A, et al. (1973) Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet 2: 1221–1225. doi: 10.1016/s0140-6736(73)90970-7
[15]  Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, et al. (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 7: 1229–1234. doi: 10.1093/hmg/7.8.1229
[16]  Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstr?m E, et al. (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39: 1108–1113. doi: 10.1038/ng2106
[17]  Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, et al. (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357: 851–862. doi: 10.1056/nejmoa073493
[18]  Mohme M, Hotz C, Stevanovic S, Binder T, Lee J-H, et al. (2013) HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. Brain 136: 1783–1798. doi: 10.1093/brain/awt108
[19]  Lünemann JD, Jelci? I, Roberts S, Lutterotti A, Tackenberg B, et al. (2008) EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med 205: 1763–1773. doi: 10.1084/jem.20072397
[20]  Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296: 2832–2838. doi: 10.1001/jama.296.23.2832
[21]  Riise T, Nortvedt MW, Ascherio A (2003) Smoking is a risk factor for multiple sclerosis. Neurology 61: 1122–1124. doi: 10.1212/01.wnl.0000081305.66687.d2
[22]  McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182: 75–85. doi: 10.1084/jem.182.1.75
[23]  Gajate C, Santos-Beneit A, Modolell M, Mollinedo F (1998) Involvement of c-Jun NH2-terminal kinase activation and c-Jun in the induction of apoptosis by the ether phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-p?hosphocholine. Mol Pharmacol 53: 602–612.
[24]  Van der Luit AH, Vink SR, Klarenbeek JB, Perrissoud D, Solary E, et al. (2007) A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol Cancer Ther 6: 2337–2345. doi: 10.1158/1535-7163.mct-07-0202
[25]  Klein-Franke A, Munder PG (1992) Alkyllysophospholipid prevents induction of experimental allergic encephalomyelitis. J Autoimmun 5: 83–91. doi: 10.1016/s0896-8411(05)80053-8
[26]  Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
[27]  Serrano-Fernández P, M?ller S, Goertsches R, Fiedler H, Koczan D, et al. (2010) Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity 43: 172–178. doi: 10.3109/08916930903219040
[28]  Jones JL, Thompson SAJ, Loh P, Davies JL, Tuohy OC, et al. (2013) Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci U S A 110: 20200–20205. doi: 10.1073/pnas.1313654110
[29]  Munder PG, Westphal O (1990) Antitumoral and other biomedical activities of synthetic ether lysophospholipids. Chem Immunol 49: 206–235. doi: 10.1159/000318979
[30]  Fujiwara K, Daniel LW, Modest EJ, Wallen CA (1994) Relationship of cell survival, drug dose, and drug uptake after 1-O-octadecyl-2-O-methyl-rac-glycero-3-p?hosphocholinetreatment. Cancer Chemother Pharmacol 34: 472–476. doi: 10.1007/bf00685657
[31]  Takeda S, Rodewald HR, Arakawa H, Bluethmann H, Shimizu T (1996) MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5: 217–228. doi: 10.1016/s1074-7613(00)80317-9
[32]  Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, et al. (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 98: 8732–8737. doi: 10.1073/pnas.161126098
[33]  Ernst B, Lee DS, Chang JM, Sprent J, Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11: 173–181. doi: 10.1016/s1074-7613(00)80092-8
[34]  Sprent J, Surh CD (2011) Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12: 478–484. doi: 10.1038/ni.2018
[35]  Kondo T, Cortese I, Markovic-Plese S, Wandinger KP, Carter C, et al. (2001) Dendritic cells signal T cells in the absence of exogenous antigen. Nat Immunol 2: 932–938. doi: 10.1038/ni711
[36]  Revy P, Sospedra M, Barbour B, Trautmann A (2001) Functional antigen-independent synapses formed between T cells and dendritic cells. Nat Immunol 2: 925–931. doi: 10.1038/ni713
[37]  Laplaud D-A, Ruiz C, Wiertlewski S, Brouard S, Berthelot L, et al. (2004) Blood T-cell receptor beta chain transcriptome in multiple sclerosis. Characterization of the T cells with altered CDR3 length distribution. Brain 127: 981–995. doi: 10.1093/brain/awh119
[38]  Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, et al. (1995) Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3: 407–415. doi: 10.1016/1074-7613(95)90170-1
[39]  Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, et al. (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16: 273–280. doi: 10.1038/nn.3318
[40]  Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al. (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet
[41]  Roos G, Berdel WE (1986) Sensitivity of human hematopoietic cell lines to an alkyl-lysophospholipid-derivative. Leuk Res 10: 195–202. doi: 10.1016/0145-2126(86)90042-1
[42]  Mollinedo F, Gajate C, Martín-Santamaría S, Gago F (2004) ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem 11: 3163–3184. doi: 10.2174/0929867043363703
[43]  Kiss Z, Crilly KS (1997) Alkyl lysophospholipids inhibit phorbol ester-stimulated phospholipase D activity and DNA synthesis in fibroblasts. FEBS Lett 412: 313–317. doi: 10.1016/s0014-5793(97)00817-x
[44]  Brinkmann V, Geiger T, Alkan S, Heusser CH (1993) Interferon α increases the frequency of interferon y-producing human CD4 + T cells. J Exp Med 178: 1655–1663. doi: 10.1084/jem.178.5.1655
[45]  Cousens BLP, Peterson R, Hsu S, Dorner A, Altman JD, et al. (1999) Two roads diverged: interferon a/b– and interleukin 12–mediated pathways in promoting T cell interferon g responses during viral infection. J Exp Med 189: 1315–1327. doi: 10.1084/jem.189.8.1315
[46]  Van Baarsen LGM, Vosslamber S, Tijssen M, Baggen JMC, van der Voort LF, et al. (2008) Pharmacogenomics of interferon-beta therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS One 3: e1927. doi: 10.1371/journal.pone.0001927
[47]  Sellebjerg F, Datta P, Larsen J, Rieneck K, Alsing I, et al. (2008) Gene expression analysis of interferon-beta treatment in multiple sclerosis. Mult Scler 14: 615–621. doi: 10.1177/1352458507085976
[48]  Hilpert J, Beekman JM, Schwenke S, Kowal K, Bauer D, et al. (2008) Biological response genes after single dose administration of interferon beta-1b to healthy male volunteers. J Neuroimmunol 199: 115–125. doi: 10.1016/j.jneuroim.2008.04.036
[49]  Singh MK, Scott TF, LaFramboise WA, Hu FZ, Post JC, et al. (2007) Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing beta-interferon therapy. J Neurol Sci 258: 52–59. doi: 10.1016/j.jns.2007.02.034
[50]  Muraro PA, Liberati L, Bonanni L, Pantalone A, Caporale CM, et al. (2004) Decreased integrin gene expression in patients with MS responding to interferon-beta treatment. J Neuroimmunol 150: 123–131. doi: 10.1016/j.jneuroim.2004.01.002
[51]  Stürzebecher S, Wandinger KP, Rosenwald A, Sathyamoorthy M, Tzou A, et al. (2003) Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 126: 1419–1429. doi: 10.1093/brain/awg147
[52]  Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, et al. (1997) Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-alpha in chronic myelogenous leukemia. Blood 89: 957–964.
[53]  Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, et al. (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424: 516–523. doi: 10.1038/nature01850
[54]  Chawla-Sarkar M, Leaman DW, Borden EC (2001) Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin Cancer Res 7: 1821–1831.
[55]  Micali OC, Cheung HH, Plenchette S, Hurley SL, Liston P, et al. (2007) Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta. BMC Cancer 7: 52. doi: 10.1186/1471-2407-7-52
[56]  Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, et al. (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12: 599–609. doi: 10.1016/s1074-7613(00)80211-3
[57]  Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ (2001) Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci U S A 98: 13884–13888. doi: 10.1073/pnas.241358198

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133