全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Non-Thermal Atmospheric Pressure Plasma Inhibits Thyroid Papillary Cancer Cell Invasion via Cytoskeletal Modulation, Altered MMP-2/-9/uPA Activity

DOI: 10.1371/journal.pone.0092198

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plasma, the fourth state of matter, is defined as a partially or completely ionized gas that includes a mixture of electrons and ions. Advances in plasma physics have made it possible to use non-thermal atmospheric pressure plasma (NTP) in cancer research. However, previous studies have focused mainly on apoptotic cancer cell death mediated by NTP as a potential cancer therapy. In this study, we investigated the effect of NTP on invasion or metastasis, as well as the mechanism by which plasma induces anti-migration and anti-invasion properties in human thyroid papillary cancer cell lines (BHP10-3 and TPC1). Wound healing, pull-down, and Transwell assays demonstrated that NTP reduced cell migration and invasion. In addition, NTP induced morphological changes and cytoskeletal rearrangements, as detected by scanning electron microscopy and immunocytochemistry. We also examined matrix metalloproteinase (MMP)-2/-9 and urokinase-type plasminogen activator (uPA) activity using gelatin zymography, uPA assays and RT-PCR. FAK, Src, and paxillin expression was detected using Western blot analyses and immunocytochemistry. NTP decreased FAK, Src, and paxillin expression as well as MMP/uPA activity. In conclusion, NTP inhibited the invasion and metastasis of BHP10-3 and TPC1 cells by decreasing MMP-2/-9 and uPA activities and rearranging the cytoskeleton, which is regulated by the FAK/Src complex. These findings suggest novel actions for NTP and may aid in the development of new therapeutic strategies for locally invasive and metastatic cancers.

References

[1]  Rahmani N, Abbas Hashemi S, Fazli M, Raisian M (2013) Clinical management and outcomes of papillary, follicular and medullary thyroid cancer surgery. Med Glas (Zenica) 10: 164–167.
[2]  Ota I, Higashiyama S, Masui T, Yane K, Hosoi H, et al. (2013) Heparin-binding EGF-like growth factor enhances the activity of invasion and metastasis in thyroid cancer cells. Oncol Rep 30: 1593–1600. doi: 10.3892/or.2013.2659
[3]  O'Neill CJ, Coorough N, Lee JC, Clements J, Delbridge LW, et al. (2013) Disease outcomes and nodal recurrence in patients with papillary thyroid cancer and lateral neck nodal metastases. ANZ J Surg doi: 10.1111/ans.12045
[4]  Kim YS (2012) Patterns and predictive factors of lateral lymph node metastasis in papillary thyroid microcarcinoma. Otolaryngol Head Neck Surg 147: 15–19. doi: 10.1177/0194599812439277
[5]  Panngom K, Baik KY, Nam MK, Han JH, Rhim H, et al. (2013) Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis 4: e642. doi: 10.1038/cddis.2013.168
[6]  Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, et al. (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105: 1295–1301.
[7]  Watts AE, Fubini SL, Vernier-Singer M, Golkowski C, Shin S, et al. (2006) In vitro analysis of nonthermal plasma as a disinfecting agent. Am J Vet Res 67: 2030–2035. doi: 10.2460/ajvr.67.12.2030
[8]  Kramer A, Lindequist U, Weltmann KD, Wilke C, von Woedtke T (2008) Plasma Medicine - its perspective for wound therapy. GMS Krankenhhyg Interdiszip 3: Doc16.
[9]  Zippi M, Traversa G, Cocco A, Pica R, Cassieri C, et al. (2012) [Use of argon plasma coagulation in digestive endoscopy: a concise review]. Clin Ter 163: e435–440.
[10]  Kim CH, Kwon S, Bahn JH, Lee K, Jun SI, et al. (2010) Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett 96: 243701. doi: 10.1063/1.3449575
[11]  Kim CH, Bahn JH, Lee SH, Kim GY, Jun SI, et al. (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150: 530–538. doi: 10.1016/j.jbiotec.2010.10.003
[12]  Tuhvatulin AI, Sysolyatina EV, Scheblyakov DV, Logunov DY, Vasiliev MM, et al. (2012) Non-thermal Plasma Causes p53-Dependent Apoptosis in Human Colon Carcinoma Cells. Acta Naturae 4: 82–87.
[13]  Sensenig R, Kalghatgi S, Cerchar E, Fridman G, Shereshevsky A, et al. (2011) Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng 39: 674–687. doi: 10.1007/s10439-010-0197-x
[14]  Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, et al. (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130: 2185–2194. doi: 10.1002/ijc.26252
[15]  Xiao W, Jiang M, Li H, Li C, Su R, et al. (2013) Knockdown of FAK inhibits the invasion and metastasis of Tca8113 cells in vitro. Mol Med Rep 8: 703–707.
[16]  Chan KT, Cortesio CL, Huttenlocher A (2009) FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol 185: 357–370. doi: 10.1083/jcb.200809110
[17]  van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, et al. (2007) RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol 178: 1279–1293. doi: 10.1083/jcb.200612053
[18]  Lee BS, Kang SU, Hwang HS, Kim YS, Sung ES, et al. (2012) An agonistic antibody to human death receptor 4 induces apoptotic cell death in head and neck cancer cells through mitochondrial ROS generation. Cancer Lett 322: 45–57. doi: 10.1016/j.canlet.2012.02.007
[19]  Lim YC, Park HY, Hwang HS, Kang SU, Pyun JH, et al. (2008) (-)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Lett 271: 140–152. doi: 10.1016/j.canlet.2008.05.048
[20]  Caccia D, Micciche F, Cassinelli G, Mondellini P, Casalini P, et al. (2010) Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Mol Cancer 9: 278. doi: 10.1186/1476-4598-9-278
[21]  Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63: 610–615. doi: 10.1016/j.addr.2010.11.001
[22]  Tong B, Lu D, Wei Z, Wang T, Xia Y, et al. (2013) Gleditsioside B, a triterpene saponin isolated from the anomalous fruits of Gleditsia sinensis Lam., abrogates bFGF-induced endothelial cell migration through preventing the activation of MMP-2 and FAK via inhibiting ERK and PI3K/AKT signaling pathways. Vascul Pharmacol 58: 118–126. doi: 10.1016/j.vph.2012.09.006
[23]  Kornberg LJ, Grant MB (2007) Adenoviruses increase endothelial cell proliferation, migration, and tube formation: partial reversal by the focal adhesion kinase inhibitor, FRNK. Microvasc Res 73: 157–162. doi: 10.1016/j.mvr.2007.02.005
[24]  Voulgari A, Pintzas A (2009) Epithelial–mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1796: 75–90. doi: 10.1016/j.bbcan.2009.03.002
[25]  Owens LV, Xu L, Dent GA, Yang X, Sturge GC, et al. (1996) Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol 3: 100–105. doi: 10.1007/bf02409059
[26]  Weiner TM, Liu ET, Craven RJ, Cance WG (1993) Expression of focal adhesion kinase gene and invasive cancer. Lancet 342: 1024–1025. doi: 10.1016/0140-6736(93)92881-s
[27]  Luo M, Fan H, Nagy T, Wei H, Wang C, et al. (2009) Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 69: 466–474. doi: 10.1158/0008-5472.can-08-3078
[28]  van Nimwegen MJ, van de Water B (2007) Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 73: 597–609. doi: 10.1016/j.bcp.2006.08.011
[29]  Gorla L, Mondellini P, Cuccuru G, Micciche F, Cassinelli G, et al. (2009) Proteomics study of medullary thyroid carcinomas expressing RET germ-line mutations: identification of new signaling elements. Mol Carcinog 48: 220–231. doi: 10.1002/mc.20474
[30]  Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28: 35–49. doi: 10.1007/s10555-008-9165-4
[31]  Birukova AA, Malyukova I, Poroyko V, Birukov KG (2007) Paxillin-beta-catenin interactions are involved in Rac/Cdc42-mediated endothelial barrier-protective response to oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 293: L199–211. doi: 10.1152/ajplung.00020.2007
[32]  Turner CE (2000) Paxillin interactions. J Cell Sci 113 Pt 23: 4139–4140.
[33]  Chen BH, Tzen JT, Bresnick AR, Chen HC (2002) Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J Biol Chem 277: 33857–33863. doi: 10.1074/jbc.m204429200
[34]  Hildebrand JD, Taylor JM, Parsons JT (1996) An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol 16: 3169–3178.
[35]  Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18: 516–523. doi: 10.1016/j.ceb.2006.08.011
[36]  Siesser PM, Hanks SK (2006) The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12: 3233–3237. doi: 10.1158/1078-0432.ccr-06-0456
[37]  Lu Z, Lu N, Li C, Li F, Zhao K, et al. (2012) Oroxylin A inhibits matrix metalloproteinase-2/9 expression and activation by up-regulating tissue inhibitor of metalloproteinase-2 and suppressing the ERK1/2 signaling pathway. Toxicol Lett 209: 211–220. doi: 10.1016/j.toxlet.2011.12.022
[38]  Kwiatkowska A, Kijewska M, Lipko M, Hibner U, Kaminska B (2011) Downregulation of Akt and FAK phosphorylation reduces invasion of glioblastoma cells by impairment of MT1-MMP shuttling to lamellipodia and downregulates MMPs expression. Biochim Biophys Acta 1813: 655–667. doi: 10.1016/j.bbamcr.2011.01.020
[39]  Shibata K, Kikkawa F, Nawa A, Thant AA, Naruse K, et al. (1998) Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Res 58: 900–903.
[40]  Nomura H, Fujimoto N, Seiki M, Mai M, Okada Y (1996) Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase A) in human gastric carcinomas. Int J Cancer 69: 9–16. doi: 10.1002/(sici)1097-0215(19960220)69:1<9::aid-ijc3>3.3.co;2-4
[41]  Burduk PK, Bodnar M, Sawicki P, Szylberg ?, Wi?niewska E, et al. (2014) Expression of MMP2, MMP9, TIMP1 and TIMP2 could predict lymph node metastases in oropharyngeal squamous cell carcinoma. Head & Neck n/a–n/a. doi: 10.1002/hed.23618
[42]  Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, et al. (2001) Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res 7: 2396–2404.
[43]  Yang YN, Wang F, Zhou W, Wu ZQ, Xing YQ (2012) TNF-alpha stimulates MMP-2 and MMP-9 activities in human corneal epithelial cells via the activation of FAK/ERK signaling. Ophthalmic Res 48: 165–170. doi: 10.1159/000338819
[44]  Shih YW, Chien ST, Chen PS, Lee JH, Wu SH, et al. (2010) Alpha-mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via alphavbeta3 integrin/FAK/ERK and NF-kappaB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem Biophys 58: 31–44. doi: 10.1007/s12013-010-9091-2
[45]  Zucker SN, Zirnheld J, Bagati A, DiSanto TM, Des Soye B, et al. (2012) Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol Ther 13: 1299–1306. doi: 10.4161/cbt.21787
[46]  Entschladen F, Drell TLt, Lang K, Joseph J, Zaenker KS (2004) Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 5: 254–258. doi: 10.1016/s1470-2045(04)01431-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133