全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Enhanced Adult Neurogenesis Increases Brain Stiffness: In Vivo Magnetic Resonance Elastography in a Mouse Model of Dopamine Depletion

DOI: 10.1371/journal.pone.0092582

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE) to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dinehydrochloride (MPTP) mouse model for dopaminergic neurodegeneration as observed in Parkinson’s disease (PD) to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration.

References

[1]  Muthupillai R, Ehman RL (1996) Magnetic resonance elastography. Nat Med 2: 601–603. doi: 10.1038/nm0596-601
[2]  Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, et al. (2008) Magnetic resonance elastography in the brain. Neuroimage 39: 231–237. doi: 10.1016/j.neuroimage.2007.08.030
[3]  Sack I, Beierbach B, Hamberger U, Klatt D, Braun J (2008) Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 21: 265–271. doi: 10.1002/nbm.1189
[4]  Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed 21: 755–764. doi: 10.1002/nbm.1254
[5]  Clayton EH, Genin GM, Bayly PV (2012) Transmission, attenuation and reflection of shear waves in the human brain. J R Soc Interface 9: 2899–2910. doi: 10.1098/rsif.2012.0325
[6]  Weaver JB, Pattinson AJ, McGarry MD, Perreard IM, Swienckowski JG, et al. (2012) Brain mechanical property measurement using MRE in intrinsic activation. Phys Med Biol 57: 7275–7287. doi: 10.1088/0031-9155/57/22/7275
[7]  Johnson CL, McGarry MD, Gharibans AA, Weaver JB, Paulsen KD, et al. (2013) Local mechanical properties of white matter structure in the human brain. Neuroimage 79: 145–152. doi: 10.1016/j.neuroimage.2013.04.089
[8]  Lu Y-B, Iandiev I, Hollborn M, K?rber N, Ulbricht et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25: 624–631. doi: 10.1096/fj.10-163790
[9]  Tully B, Ventikos Y (2011) Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J Fluid Mech 667: 188–215. doi: 10.1017/s0022112010004428
[10]  Sack I, Streitberger KJ, Krefting D, Paul F, Braun J (2011) The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PlosOne 6: e23451. doi: 10.1371/journal.pone.0023451
[11]  Streitberger K-J, Wiener E, Hoffmann J, Freimann FB, Klatt D, et al. (2011) In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed 24: 385–392. doi: 10.1002/nbm.1602
[12]  Murphy MC, Huston III J, Jack Jr CR, Glaser KJ, Manduca A, et al. (2011) Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging 34: 494–498. doi: 10.1002/jmri.22707
[13]  Streitberger K-J, Sack I, Krefting D, Pfueller C, Braun J, et al. (2012) Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PlosOne 7: e29888. doi: 10.1371/journal.pone.0029888
[14]  Wuerfel J, Paul F, Beierbach B, Hamhaber U, Klatt D, et al. (2010) MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49: 2520–2525. doi: 10.1016/j.neuroimage.2009.06.018
[15]  Schregel K, Wuerfel née Tysiak E, Garteiser P, Gemeinhardt I, Prozorovski T, et al. (2012) Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc Natl Aca Sci U S A 109: 6650–6655. doi: 10.1073/pnas.1200151109
[16]  Riek K, Millward JM, Hamann I, Mueller S, Pfueller CF, et al. (2012) Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. NeuroImage: Clinical 1: 81–90. doi: 10.1016/j.nicl.2012.09.003
[17]  Freimann FB, Mueller S, Streitberger K-J, Guo J, Rot S, et al. (2013) MR elastography in a murine stroke model reveals correlation of macroscopic viscoelastic properties of the brain with neuronal density. NMR Biomed 26: 1534–1539. doi: 10.1002/nbm.2987
[18]  Lendahl U, Zimmermann LB, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595. doi: 10.1016/0092-8674(90)90662-x
[19]  Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18: 2707–2712. doi: 10.1111/j.1460-9568.2003.02986.x
[20]  Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27: 447–452. doi: 10.1016/j.tins.2004.05.013
[21]  Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, et al. (2002) Functional neurogenesis in the adult hippocampus. Nature 415: 1030–1034. doi: 10.1038/4151030a
[22]  Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20: 575–579. doi: 10.1111/j.1460-9568.2004.03486.x
[23]  Borta A, Hoeglinger GU (2007) Dopamine and adult neurogenesis. J Neurochem 100: 587–595. doi: 10.1111/j.1471-4159.2006.04241.x
[24]  H?glinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, et al. (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neurosci 7: 726–735. doi: 10.1038/nn1265
[25]  Freundlieb N, Francois C, Tande D, Oertel WH, Hirsch EC, et al. (2006) Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged animals. J Neurosci 26: 2321–2325. doi: 10.1523/jneurosci.4859-05.2006
[26]  Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. Neurobiol Dis 25: 5815–5823. doi: 10.1523/jneurosci.1120-05.2005
[27]  Klaissle P, Lesemann A, Huehnchen P, Hermann A, Storch A, et al. (2012) Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neurosci 13: 1–15. doi: 10.1186/1471-2202-13-132
[28]  Lesemann A, Reinel C, Huehnchen P, Pilhatsch M, Hellweg R, et al. (2012) MPTP-induced hippocampal effects on serotonin, dopamine, neurotrophins, adult neurogenesis and depression-like behaviour are partially influenced by fluoxetine in adult mice. Brain Res 1457: 51–69. doi: 10.1016/j.brainres.2013.03.016
[29]  Park J-H, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol. 222: 267–276. doi: 10.1016/j.expneurol.2010.01.004
[30]  Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 28: 2231–2241. doi: 10.1523/jneurosci.3574-07.2008
[31]  Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuro-Psychopharmacol & Biol Psychiat 21: 1–22. doi: 10.1016/s0278-5846(96)00157-1
[32]  Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668: 71–79. doi: 10.1016/0006-8993(94)90512-6
[33]  Kopin IJ (1987) MPTP: An industrial chemical and contaminant of illicit narcotics stimulates a new era in research on parkinson’s disease. Environ. Health Perspect 75: 45–51. doi: 10.1289/ehp.877545
[34]  Scatton B, Simon H, Le Moal M, Bischoff S (1980) Origin of dopaminergic innvervation of the rat hippocampus. Neurosci Lett 18: 125–131. doi: 10.1016/0304-3940(80)90314-6
[35]  Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9: 321–353. doi: 10.1016/0361-9230(82)90145-9
[36]  Clayton EH, Garbow JR, Bayly PV (2011) Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography. Phys Med Biol 56: 2391–2406. doi: 10.1088/0031-9155/56/8/005
[37]  Papazoglou S, Hamhaber U, Braun J, Sack I (2008) Algebraic Helmholtz inversion in planar magnetic resonance elastography. Phys Med Biol 53: 3147–3158. doi: 10.1088/0031-9155/53/12/005
[38]  Posnansky O, Guo J, Hirsch S, Papazoglou S, Braun J, et al. (2012) Fractal network dimension and viscoelastic powerlaw behavior: A modeling approach based on a coarse-graining procedure combined with shear oscillatory rheometry. Phys Med Biol 57: 4023–4040. doi: 10.1088/0031-9155/57/12/4023
[39]  Peng J, Xie L, Jin K, Greenberg DA, Andersen JK (2008) Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dinemodel of parkinson’s disease. Neuroscience 153: 664–670. doi: 10.1016/j.neuroscience.2008.02.063
[40]  Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, et al. (2009) The impact of aging and gender on brain viscoelasticity. Neuroimage 46: 652–657. doi: 10.1016/j.neuroimage.2009.02.040
[41]  Lu Y-B, Franze K, Seifert G, Steinhaeuser C, Kirchhoff F, et al. (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A 103: 17759–17764. doi: 10.1073/pnas.0606150103
[42]  Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S et al.. (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467, 455–463.
[43]  Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K, et al. (2004) Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 46: 41–52. doi: 10.1002/glia.10337
[44]  Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, et al. (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54: 805–814. doi: 10.1002/glia.20407
[45]  Steiner B, Zurborg S, Hoerster H, Fabel K, Kempermann G (2008) Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154: 521–529. doi: 10.1016/j.neuroscience.2008.04.023
[46]  Aharoni R, Arnon R, Eilam R (2005) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25: 8217–8228. doi: 10.1523/jneurosci.1859-05.2005
[47]  Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8: 963–970. doi: 10.1038/nm747
[48]  Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36: 249–266. doi: 10.1002/(sici)1097-4695(199808)36:2<249::aid-neu11>3.0.co;2-9
[49]  Huehnchen P, Prozorovski T, Klaissle P, Lesemann A, Ingwersen J, et al. (2011) Modulation of adult hippocampal neurogenesis during myelin-directed autoimmune neuroinflammation. Glia 50: 132–142. doi: 10.1002/glia.21082
[50]  Kurkowska-Jastrzebeska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dineintoxication in mouse. Exp Neurol 156: 50–61. doi: 10.1006/exnr.1998.6993
[51]  Barnhill E, Kennedy P, Hammer S, van Beek EJ, Brown C, et al. (2013) Statistical mapping of the effects of knee extension on thigh muscle viscoelastic properties using magnetic resonance elastography. Physiol Meas 34: 1675–1698. doi: 10.1088/0967-3334/34/12/1675
[52]  Guo J, Hirsch S, Fehlner A, Papazoglou S, Scheel M, et al. (2013) Towards an elastographic atlas of brain anatomy. PlosOne 8: e71807. doi: 10.1371/journal.pone.0071807

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133