[1] | Takeda M, Hiragaki S, Bembenek J, Tsugehara T, Tohno Y, et al. (2011) Photoperiodic system for pupal diapause in Antheraea pernyi: clock, counter, endocrine switch and roles of indolamine pathways. Int. J. Wild Silkmoth & Silk 16: 97–109.
|
[2] | Sauman I, Reppert SM (1996) Circadian clock neurons in the silkmoth, Antheraea pernyi: novel mechanisms of PERIOD protein regulation. Neuron 17: 889–900. doi: 10.1016/s0896-6273(00)80220-2
|
[3] | Liu X, Zwiebel LJ, Hinton D, Benzer S, Hall JC, et al. (1992) The period gene encodes a predominantly nuclear protein in adult Drosophila. J. Neurosci 12: 2735–2744.
|
[4] | Vafopoulou X, Terry KL, Steel CGH (2010) The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus. J. Comp Neurol 518: 1264–1282. doi: 10.1002/cne.22274
|
[5] | Sehadova H, Markova EP, Sehnal F, Takeda M (2004) Distribution of circadian clock-related proteins in the cephalic nervous system of the silkworm, Bombyx mori.. J. Biol Rhythms 19: 466–482. doi: 10.1177/0748730404269153
|
[6] | Sokolove PG (1975) Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Res 87: 13–21. doi: 10.1016/0006-8993(75)90775-1
|
[7] | Ichihara N (2000) Molecular biological study on neuroendocrine mechanism of circadian and photoperiodic clocks in insects. Kobe Univ., Japan. PhD dissertation 166 pp.
|
[8] | Matsui T, Matsumoto T, Ichihara N, Sakai T, Satake H, et al. (2009) The pars intercerebralis as a modulator of locomotor rhythms and feeding in the American cockroach, Periplaneta americana.. Physiol Behav 96: 548–556. doi: 10.1016/j.physbeh.2008.12.009
|
[9] | Hall JC (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Advances in Genetics 48: 1–280. doi: 10.1016/s0065-2660(03)48000-0
|
[10] | Hardin PE (2005) The circadian timekeeping system of Drosophila. Current Biology 15: R714–R722. doi: 10.1016/j.cub.2005.08.019
|
[11] | Sandrelli F, Costa R, Kyriacou CP, Rosato E (2008) Comparative analysis of circadian clock genes in insects. Insect Molecular Biology 17: 447–463. doi: 10.1111/j.1365-2583.2008.00832.x
|
[12] | Zhang Y, Emery P (2011) Molecular and neural control of insect circadian rhythms. Insect Molecular Biology and Biochemistry (ed. by L. I. Gilbert), 513–551. Elsevier, The Netherlands.
|
[13] | Zheng X, Sehgal A (2008) Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178: 1147–1155. doi: 10.1534/genetics.107.088658
|
[14] | Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40: 519–561. doi: 10.1146/annurev.pharmtox.40.1.519
|
[15] | Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, et al. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase lepsilon. Cell 94: 97–107. doi: 10.1016/s0092-8674(00)81225-8
|
[16] | Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, et al. (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94: 83–95. doi: 10.1016/s0092-8674(00)81224-6
|
[17] | Martinek S, Inonog S, Manoukian AS, Young MW (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105: 769–779. doi: 10.1016/s0092-8674(01)00383-x
|
[18] | Lin Y, Stormo GD, Taghert PH (2004) The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System. J. Neuroscince 24: 7951–7957. doi: 10.1523/jneurosci.2370-04.2004
|
[19] | Lin JM, Schroeder A, Allada R (2005) In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD. J. Neurosci 25: 11175–11183. doi: 10.1523/jneurosci.2159-05.2005
|
[20] | Akten B, Jauch E, Genova GK, Kim EY, Edery I, et al. (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6: 251–257. doi: 10.1038/nn1007
|
[21] | Sathyanarayanan S, Zheng X, Xiao R, Sehgal A (2004) Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116: 603–615. doi: 10.1016/s0092-8674(04)00128-x
|
[22] | Kim EY, Edery I (2006) Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc Natl Acad Sci USA 103: 6178–6183. doi: 10.1073/pnas.0511215103
|
[23] | Yu W, Zheng H, Houl JH, Dauwalder B, Hardin PE (2006) PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev 20: 723–733. doi: 10.1101/gad.1404406
|
[24] | Fang Y, Sathyanarayanan S, Sehgal A (2007) Posttranslational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev 21: 1506–1518. doi: 10.1101/gad.1541607
|
[25] | Rothenfluh A, Young MW, Saez L (2000) A TIMELESS independent function for PERIOD proteins in the Drosophila clock. Neuron 26: 505–514. doi: 10.1016/s0896-6273(00)81182-4
|
[26] | Koh K, Zheng X, Sehgal A (2006) JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312: 1809–1812. doi: 10.1126/science.1124951
|
[27] | Peschel N, Veleri S, Stanewsky R (2006) Veela defines a molecular link between cryptochrome and timeless in the lightinput pathway to Drosophila’s circadian clock. Proc Natl Acad Sci USA 103: 17313–17318. doi: 10.1073/pnas.0606675103
|
[28] | Young MW (1998) The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu Rev Biochem 67: 135–152. doi: 10.1146/annurev.biochem.67.1.135
|
[29] | Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24: 948–955. doi: 10.1093/molbev/msm011
|
[30] | Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, et al. (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16: 1352–1365. doi: 10.1101/gr.5094806
|
[31] | Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon AS, et al. (2010) A molecular switch for photoperiod responsiveness in mammals. Current Biology 20: 2193–2198. doi: 10.1016/j.cub.2010.10.048
|
[32] | Hut RA (2010) Photoperiodism: shall EYA compare thee to a summer’s day? Current Biology 21: R21–R25. doi: 10.1016/j.cub.2010.11.060
|
[33] | Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Current Opinion in Plant Biology 13: 83–89. doi: 10.1016/j.pbi.2009.09.007
|
[34] | Masumoto K-h, Ukai-Tadenuma M, Kasukawa T, Nagano M, Uno KD, et al. (2010) Acute induction of Eya3 by late-night light stimulation triggers TSHb expression in photoperiodism. Current Biology 20: 2199–2206. doi: 10.1016/j.cub.2010.11.038
|
[35] | Stehlík J, Závodská R, Shimada K, ?auman I, Ko?tál V (2008) Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms 23: 129–139. doi: 10.1177/0748730407313364
|
[36] | Kobelková A, Bajgar A, Dolezel D (2010) Functional molecular analysis of a circadian clock gene timeless promoter from the Drosophilid fly Chymomyza costata. J Biol Rhythms 25: 399–409. doi: 10.1177/0748730410385283
|
[37] | Yamada H, Yamamoto M-T (2011) Association between circadian clock genes and diapause incidence in Drosophila triauraria. Plos One 6: e27493. doi: 10.1371/journal.pone.0027493
|
[38] | Han B, Denlinger DL (2009) Length variation in a specific region of the period gene correlates with differences in pupal diapause incidence in the flesh fly, Sarcophaga bullata. J Insect Physiol 55: 415–418. doi: 10.1016/j.jinsphys.2009.01.005
|
[39] | Mito T, Nakamura T, Bando T, Ohuchi H, Noji S (2011) The advent of RNA interference in entomology. Entomological Science 14: 1–8. doi: 10.1111/j.1479-8298.2010.00408.x
|
[40] | Shao QM, Hiragaki S, Takeda M (2008) Co-loccalization and unique distributions of two clock proteins CYCLE and CLOCK in the cephalic gangalia of the ground cricket, Allonemobius allardi.. Cell Tissue Res 331: 435–446. doi: 10.1007/s00441-007-0534-z
|
[41] | Hiragaki S. Uno T, Takeda M (2009) Putative regulatory mechanism of prothoracicotropic hormone (PTTH) secretion in the American cockroach, Periplaneta americana as inferred from co-locatization of Rab8, PTTH and protein kinase C in neurosectretory cells. Cell and Tissue Res 335: 607–615. doi: 10.1007/s00441-008-0747-9
|
[42] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
|
[43] | Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, et al. (2008) Off-target effects of siRNA specific for GFP.. BMC Mol Biol 24 9: 60. doi: 10.1186/1471-2199-9-60
|
[44] | Livak KJ, Schimittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
|
[45] | Matsumoto M, Takeda M (2002) Changes in brain monoamine contents in diapause pupae of Antheraea pernyi when activated under long-day and by chilling. J. Insect Physiol 48: 765–771. doi: 10.1016/s0022-1910(02)00102-6
|
[46] | Tsugehara T, Imai T, Takeda M (2012) Characterization of arylalkylamine N-acetyltransferase from Antheraea pernyi and pesticidal drug design based on the baculovirus-expressed enzyme. Comp Biochem Physiol C Toxicol Pharmacol 157: 93–102. doi: 10.1016/j.cbpc.2012.10.003
|
[47] | Saunders DS (1970) The temperature-compensated photoperiodic clock ‘programming’ development and pupal diapause in the flesh-fly, Sarcophaga argyrostoma.. J. Insect Physiology 17: 801–812. doi: 10.1016/0022-1910(71)90098-9
|
[48] | Binkley S, Mosher K, Rubin F, White B (1988) Xenopus Tadpole melanophores are controlled by dark and light and melatonin without influence of time of day. Pineal Research 5: 87–97. doi: 10.1111/j.1600-079x.1988.tb00771.x
|
[49] | Kappers JA (1978) Localization of indoleamine and protein synthesis in the mammalian pineal gland. J. Neural Transm Suppl 13: 13–24.
|
[50] | Vivien-Roelos B, Pevet P, Beck O, Fevre-Montange M (1984) Identification of melatonin in the compound eyes of an insect, the locust (Locusta migratoria) by radioimmunoassay and gas chromatography-mass spectrometry. Neurosci lett 49: 153–157. doi: 10.1016/0304-3940(84)90152-6
|
[51] | Itoh MT, Hattori A, Nomura T, Sumi Y, Suzuki T (1995) Melatonin and arylalkylamine N-acetyltransferase activity in the silkworm, Bombyx mori. Mol Cell Endocrinol 115: 59–64. doi: 10.1016/0303-7207(95)03670-3
|
[52] | Yamano H, Watari Y, Arai T, Takeda M (2001) Melatonin in drinking water influences a circadian rhythm of locomotor activity in the house cricket, Acheta domesticus. J. Insec Physiol 47: 943–949. doi: 10.1016/s0022-1910(01)00067-1
|
[53] | Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P (1996) Transcriptional control of circadian hormone synthesis via the CREM feedback loop. Proc Natl Acad Sci USA 93: 14140–14145. doi: 10.1073/pnas.93.24.14140
|
[54] | Chang DC, McWatters HG, Williams JA, Gotter AL, Levine JD, et al. (2003) Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea pernyi. J. Biol Chem 278: 38149–38158. doi: 10.1074/jbc.m306937200
|
[55] | Wang Q, Egi Y, Takeda M, Oishi K, Sakamoto K (2014) Melatonin pathway transmits information to terminate pupal diapause in the Chinese oak silkmoth, Antheraea pernyi, and through reciprocated inhibition of dopamine pathway functions as a photoperiodic counter. Entomol. Sci. (In press).
|
[56] | Richiter K, Peschke E, Peschke D (1999) Effect of melatonin on the release of prothoracicotropic hormone from the brain of Periplaneta americana (Blattodea: Blattidea). Eur. J. Entomol 96: 341–345.
|
[57] | Pittendrigh CS (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc. Natl. Acad. Sci.of the United States of America 69: 2734–2737. doi: 10.1073/pnas.69.9.2734
|
[58] | Wang Q, Mohamed AAM, Takeda M (2013). Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism? Plos One 8: e79381. Available: http://www.plosone.org/article/info%3Ado?i%2F10.1371%2Fjournal.pone.0079381. Accessed 4 November 2013.
|
[59] | Pavelka J, Shimada K, Ko?tál V (2003) TIMELESS: a link between fly’s circadian and photoperiodic clocks? Eur J. Entomol 100: 255–265. doi: 10.14411/eje.2003.041
|
[60] | Sakamoto T, Uryu O, Tomioka K (2009) The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J. Biological Rhythms 24: 379–390. doi: 10.1177/0748730409341523
|
[61] | Ikeno T, Tanaka SI, Numata H, Goto SG (2010) Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biology 8: 116. doi: 10.1186/1741-7007-8-116
|
[62] | Ikeno T, Numata H, Goto SG (2011) Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochemical and Biophysical Research Communications 410: 394–397. doi: 10.1016/j.bbrc.2011.05.142
|