全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

N-acetyltransferase (nat) Is a Critical Conjunct of Photoperiodism between the Circadian System and Endocrine Axis in Antheraea pernyi

DOI: 10.1371/journal.pone.0092680

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4°C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNANAT caused dysfunction of photoperiodism. dsRNAPER upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNANAT decreased melatonin while dsRNAPER increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNANAT, to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism.

References

[1]  Takeda M, Hiragaki S, Bembenek J, Tsugehara T, Tohno Y, et al. (2011) Photoperiodic system for pupal diapause in Antheraea pernyi: clock, counter, endocrine switch and roles of indolamine pathways. Int. J. Wild Silkmoth & Silk 16: 97–109.
[2]  Sauman I, Reppert SM (1996) Circadian clock neurons in the silkmoth, Antheraea pernyi: novel mechanisms of PERIOD protein regulation. Neuron 17: 889–900. doi: 10.1016/s0896-6273(00)80220-2
[3]  Liu X, Zwiebel LJ, Hinton D, Benzer S, Hall JC, et al. (1992) The period gene encodes a predominantly nuclear protein in adult Drosophila. J. Neurosci 12: 2735–2744.
[4]  Vafopoulou X, Terry KL, Steel CGH (2010) The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus. J. Comp Neurol 518: 1264–1282. doi: 10.1002/cne.22274
[5]  Sehadova H, Markova EP, Sehnal F, Takeda M (2004) Distribution of circadian clock-related proteins in the cephalic nervous system of the silkworm, Bombyx mori.. J. Biol Rhythms 19: 466–482. doi: 10.1177/0748730404269153
[6]  Sokolove PG (1975) Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Res 87: 13–21. doi: 10.1016/0006-8993(75)90775-1
[7]  Ichihara N (2000) Molecular biological study on neuroendocrine mechanism of circadian and photoperiodic clocks in insects. Kobe Univ., Japan. PhD dissertation 166 pp.
[8]  Matsui T, Matsumoto T, Ichihara N, Sakai T, Satake H, et al. (2009) The pars intercerebralis as a modulator of locomotor rhythms and feeding in the American cockroach, Periplaneta americana.. Physiol Behav 96: 548–556. doi: 10.1016/j.physbeh.2008.12.009
[9]  Hall JC (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Advances in Genetics 48: 1–280. doi: 10.1016/s0065-2660(03)48000-0
[10]  Hardin PE (2005) The circadian timekeeping system of Drosophila. Current Biology 15: R714–R722. doi: 10.1016/j.cub.2005.08.019
[11]  Sandrelli F, Costa R, Kyriacou CP, Rosato E (2008) Comparative analysis of circadian clock genes in insects. Insect Molecular Biology 17: 447–463. doi: 10.1111/j.1365-2583.2008.00832.x
[12]  Zhang Y, Emery P (2011) Molecular and neural control of insect circadian rhythms. Insect Molecular Biology and Biochemistry (ed. by L. I. Gilbert), 513–551. Elsevier, The Netherlands.
[13]  Zheng X, Sehgal A (2008) Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178: 1147–1155. doi: 10.1534/genetics.107.088658
[14]  Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40: 519–561. doi: 10.1146/annurev.pharmtox.40.1.519
[15]  Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, et al. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase lepsilon. Cell 94: 97–107. doi: 10.1016/s0092-8674(00)81225-8
[16]  Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, et al. (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94: 83–95. doi: 10.1016/s0092-8674(00)81224-6
[17]  Martinek S, Inonog S, Manoukian AS, Young MW (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105: 769–779. doi: 10.1016/s0092-8674(01)00383-x
[18]  Lin Y, Stormo GD, Taghert PH (2004) The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System. J. Neuroscince 24: 7951–7957. doi: 10.1523/jneurosci.2370-04.2004
[19]  Lin JM, Schroeder A, Allada R (2005) In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD. J. Neurosci 25: 11175–11183. doi: 10.1523/jneurosci.2159-05.2005
[20]  Akten B, Jauch E, Genova GK, Kim EY, Edery I, et al. (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6: 251–257. doi: 10.1038/nn1007
[21]  Sathyanarayanan S, Zheng X, Xiao R, Sehgal A (2004) Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116: 603–615. doi: 10.1016/s0092-8674(04)00128-x
[22]  Kim EY, Edery I (2006) Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc Natl Acad Sci USA 103: 6178–6183. doi: 10.1073/pnas.0511215103
[23]  Yu W, Zheng H, Houl JH, Dauwalder B, Hardin PE (2006) PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev 20: 723–733. doi: 10.1101/gad.1404406
[24]  Fang Y, Sathyanarayanan S, Sehgal A (2007) Posttranslational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev 21: 1506–1518. doi: 10.1101/gad.1541607
[25]  Rothenfluh A, Young MW, Saez L (2000) A TIMELESS independent function for PERIOD proteins in the Drosophila clock. Neuron 26: 505–514. doi: 10.1016/s0896-6273(00)81182-4
[26]  Koh K, Zheng X, Sehgal A (2006) JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312: 1809–1812. doi: 10.1126/science.1124951
[27]  Peschel N, Veleri S, Stanewsky R (2006) Veela defines a molecular link between cryptochrome and timeless in the lightinput pathway to Drosophila’s circadian clock. Proc Natl Acad Sci USA 103: 17313–17318. doi: 10.1073/pnas.0606675103
[28]  Young MW (1998) The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu Rev Biochem 67: 135–152. doi: 10.1146/annurev.biochem.67.1.135
[29]  Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24: 948–955. doi: 10.1093/molbev/msm011
[30]  Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, et al. (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16: 1352–1365. doi: 10.1101/gr.5094806
[31]  Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon AS, et al. (2010) A molecular switch for photoperiod responsiveness in mammals. Current Biology 20: 2193–2198. doi: 10.1016/j.cub.2010.10.048
[32]  Hut RA (2010) Photoperiodism: shall EYA compare thee to a summer’s day? Current Biology 21: R21–R25. doi: 10.1016/j.cub.2010.11.060
[33]  Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Current Opinion in Plant Biology 13: 83–89. doi: 10.1016/j.pbi.2009.09.007
[34]  Masumoto K-h, Ukai-Tadenuma M, Kasukawa T, Nagano M, Uno KD, et al. (2010) Acute induction of Eya3 by late-night light stimulation triggers TSHb expression in photoperiodism. Current Biology 20: 2199–2206. doi: 10.1016/j.cub.2010.11.038
[35]  Stehlík J, Závodská R, Shimada K, ?auman I, Ko?tál V (2008) Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms 23: 129–139. doi: 10.1177/0748730407313364
[36]  Kobelková A, Bajgar A, Dolezel D (2010) Functional molecular analysis of a circadian clock gene timeless promoter from the Drosophilid fly Chymomyza costata. J Biol Rhythms 25: 399–409. doi: 10.1177/0748730410385283
[37]  Yamada H, Yamamoto M-T (2011) Association between circadian clock genes and diapause incidence in Drosophila triauraria. Plos One 6: e27493. doi: 10.1371/journal.pone.0027493
[38]  Han B, Denlinger DL (2009) Length variation in a specific region of the period gene correlates with differences in pupal diapause incidence in the flesh fly, Sarcophaga bullata. J Insect Physiol 55: 415–418. doi: 10.1016/j.jinsphys.2009.01.005
[39]  Mito T, Nakamura T, Bando T, Ohuchi H, Noji S (2011) The advent of RNA interference in entomology. Entomological Science 14: 1–8. doi: 10.1111/j.1479-8298.2010.00408.x
[40]  Shao QM, Hiragaki S, Takeda M (2008) Co-loccalization and unique distributions of two clock proteins CYCLE and CLOCK in the cephalic gangalia of the ground cricket, Allonemobius allardi.. Cell Tissue Res 331: 435–446. doi: 10.1007/s00441-007-0534-z
[41]  Hiragaki S. Uno T, Takeda M (2009) Putative regulatory mechanism of prothoracicotropic hormone (PTTH) secretion in the American cockroach, Periplaneta americana as inferred from co-locatization of Rab8, PTTH and protein kinase C in neurosectretory cells. Cell and Tissue Res 335: 607–615. doi: 10.1007/s00441-008-0747-9
[42]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
[43]  Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, et al. (2008) Off-target effects of siRNA specific for GFP.. BMC Mol Biol 24 9: 60. doi: 10.1186/1471-2199-9-60
[44]  Livak KJ, Schimittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[45]  Matsumoto M, Takeda M (2002) Changes in brain monoamine contents in diapause pupae of Antheraea pernyi when activated under long-day and by chilling. J. Insect Physiol 48: 765–771. doi: 10.1016/s0022-1910(02)00102-6
[46]  Tsugehara T, Imai T, Takeda M (2012) Characterization of arylalkylamine N-acetyltransferase from Antheraea pernyi and pesticidal drug design based on the baculovirus-expressed enzyme. Comp Biochem Physiol C Toxicol Pharmacol 157: 93–102. doi: 10.1016/j.cbpc.2012.10.003
[47]  Saunders DS (1970) The temperature-compensated photoperiodic clock ‘programming’ development and pupal diapause in the flesh-fly, Sarcophaga argyrostoma.. J. Insect Physiology 17: 801–812. doi: 10.1016/0022-1910(71)90098-9
[48]  Binkley S, Mosher K, Rubin F, White B (1988) Xenopus Tadpole melanophores are controlled by dark and light and melatonin without influence of time of day. Pineal Research 5: 87–97. doi: 10.1111/j.1600-079x.1988.tb00771.x
[49]  Kappers JA (1978) Localization of indoleamine and protein synthesis in the mammalian pineal gland. J. Neural Transm Suppl 13: 13–24.
[50]  Vivien-Roelos B, Pevet P, Beck O, Fevre-Montange M (1984) Identification of melatonin in the compound eyes of an insect, the locust (Locusta migratoria) by radioimmunoassay and gas chromatography-mass spectrometry. Neurosci lett 49: 153–157. doi: 10.1016/0304-3940(84)90152-6
[51]  Itoh MT, Hattori A, Nomura T, Sumi Y, Suzuki T (1995) Melatonin and arylalkylamine N-acetyltransferase activity in the silkworm, Bombyx mori. Mol Cell Endocrinol 115: 59–64. doi: 10.1016/0303-7207(95)03670-3
[52]  Yamano H, Watari Y, Arai T, Takeda M (2001) Melatonin in drinking water influences a circadian rhythm of locomotor activity in the house cricket, Acheta domesticus. J. Insec Physiol 47: 943–949. doi: 10.1016/s0022-1910(01)00067-1
[53]  Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P (1996) Transcriptional control of circadian hormone synthesis via the CREM feedback loop. Proc Natl Acad Sci USA 93: 14140–14145. doi: 10.1073/pnas.93.24.14140
[54]  Chang DC, McWatters HG, Williams JA, Gotter AL, Levine JD, et al. (2003) Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea pernyi. J. Biol Chem 278: 38149–38158. doi: 10.1074/jbc.m306937200
[55]  Wang Q, Egi Y, Takeda M, Oishi K, Sakamoto K (2014) Melatonin pathway transmits information to terminate pupal diapause in the Chinese oak silkmoth, Antheraea pernyi, and through reciprocated inhibition of dopamine pathway functions as a photoperiodic counter. Entomol. Sci. (In press).
[56]  Richiter K, Peschke E, Peschke D (1999) Effect of melatonin on the release of prothoracicotropic hormone from the brain of Periplaneta americana (Blattodea: Blattidea). Eur. J. Entomol 96: 341–345.
[57]  Pittendrigh CS (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc. Natl. Acad. Sci.of the United States of America 69: 2734–2737. doi: 10.1073/pnas.69.9.2734
[58]  Wang Q, Mohamed AAM, Takeda M (2013). Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism? Plos One 8: e79381. Available: http://www.plosone.org/article/info%3Ado?i%2F10.1371%2Fjournal.pone.0079381. Accessed 4 November 2013.
[59]  Pavelka J, Shimada K, Ko?tál V (2003) TIMELESS: a link between fly’s circadian and photoperiodic clocks? Eur J. Entomol 100: 255–265. doi: 10.14411/eje.2003.041
[60]  Sakamoto T, Uryu O, Tomioka K (2009) The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J. Biological Rhythms 24: 379–390. doi: 10.1177/0748730409341523
[61]  Ikeno T, Tanaka SI, Numata H, Goto SG (2010) Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biology 8: 116. doi: 10.1186/1741-7007-8-116
[62]  Ikeno T, Numata H, Goto SG (2011) Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochemical and Biophysical Research Communications 410: 394–397. doi: 10.1016/j.bbrc.2011.05.142

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133