The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.
References
[1]
Williams AJ, Hartings JA, Lu XC, Rolli ML, Tortella FC (2006) Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma 23: 1828–1846. doi: 10.1089/neu.2006.23.1828
[2]
Mondello S, Muller U, Jeromin A, Streeter J, Hayes RL, et al. (2011) Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn 11: 65–78. doi: 10.1586/erm.10.104
[3]
Liu MC, Akle V, Zheng W, Dave JR, Tortella FC, et al. (2006) Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J 394: 715–725. doi: 10.1042/bj20050905
[4]
Wang KK (2000) Calpain and caspase: can you tell the difference? Trends in neurosciences 23: 20–26. doi: 10.1016/s0166-2236(99)01479-4
[5]
Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nature Publishing Group 6: 393–403. doi: 10.1038/nrneurol.2010.74
[6]
Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, et al. (2011) Blood-Brain Barrier Breakdown Following Traumatic Brain Injury: A Possible Role in Posttraumatic Epilepsy. Cardiovascular Psychiatry and Neurology 765923: 1–11. doi: 10.1155/2011/765923
[7]
Blyth B, Farhavar A, Gee C, Hawthorn B, He H, et al. (2009) Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J Neurotrauma 26: 1497–1507. doi: 10.1089/neu.2008.0738
[8]
Zhang Z, Mondello S, Kobeissy F, Rubenstein R, Streeter J, et al. (2011) Protein biomarkers for traumatic and ischemic brain injury: from bench to bedside. Translational Stroke Research 3: 1–32. doi: 10.1007/s12975-011-0137-6
[9]
Brophy GM, Pineda JA, Papa L, Lewis SB, Valadka AB, et al. (2009) $\alpha$II-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma 26: 471–479. doi: 10.1089/neu.2008.0657
[10]
Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, et al. (2011) Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 28: 861–870. doi: 10.1089/neu.2010.1564
[11]
Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, et al. (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 27: 1203–1213. doi: 10.1089/neu.2010.1278
[12]
Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, et al. (2009) A Panel of Neuron-Enriched Proteins as Markers for Traumatic Brain Injury in Humans. J Neurotrauma 26: 1867–1877. doi: 10.1089/neu.2009.0882
[13]
Anderson KJ, Scheff SW, Miller KM, Roberts KN, Gilmer LK, et al. (2008) The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J Neurotrauma 25: 1079–1085. doi: 10.1089/neu.2007.0488
[14]
Mondello S, Papa L, Büki A, Bullock MR, Czeiter E, et al. (2011) Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care 15: R156. doi: 10.1186/cc10286
[15]
Ponomarenko NA, Durova OM, Vorobiev II, Belogurov AA, Telegin GB, et al. (2006) Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale. Immunology Letters 103: 45–50. doi: 10.1016/j.imlet.2005.10.006
[16]
Dambinova SAS, Khounteev GAG, Izykenova GAG, Zavolokov IGI, Ilyukhina AYA, et al. (2003) Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clinical Chemistry 49: 1752–1762. doi: 10.1373/49.10.1752
[17]
Dambinova SA, Izykenova GA, Burov SV, Grigorenko EV, Gromov SA (1997) The presence of autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptor in the blood serum of patients with epilepsy. Journal of the Neurological Sciences 152: 93–97. doi: 10.1016/s0022-510x(97)00150-0
[18]
Colasanti TT, Barbati CC, Rosano GG, Malorni WW, Ortona EE (2010) Autoantibodies in patients with Alzheimer’s disease: pathogenetic role and potential use as biomarkers of disease progression. Autoimmunity Reviews 9: 5–5. doi: 10.1016/j.autrev.2010.07.008
[19]
D’Andrea MR (2005) Add Alzheimer’s disease to the list of autoimmune diseases. Medical Hypotheses 64: 458–463. doi: 10.1016/j.mehy.2004.08.024
[20]
Lang B, Dale RC, Vincent A (2003) New autoantibody mediated disorders of the central nervous system. Curr Opin Neurol 16: 351–357. doi: 10.1097/00019052-200306000-00016
[21]
Ankeny DP, Popovich PG (2010) B cells and autoantibodies: complex roles in CNS injury. Trends Immunol 31: 332–338. doi: 10.1016/j.it.2010.06.006
[22]
Popovich PGP, Stokes BTB, Whitacre CCC (1996) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45: 349–363. doi: 10.1002/(sici)1097-4547(19960815)45:4<349::aid-jnr4>3.0.co;2-9
[23]
Schwartz M, Hauben E (2002) T cell-based therapeutic vaccination for spinal cord injury. Prog Brain Res 137: 401–406. doi: 10.1016/s0079-6123(02)37031-6
[24]
Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, et al. (2000) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355: 286–287. doi: 10.1016/s0140-6736(99)05140-5
[25]
Hedegaard CJ, Chen N, Sellebjerg F, S?rensen PS, Leslie RGQ, et al. (2009) Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology 128: e451–e461. doi: 10.1111/j.1365-2567.2008.02999.x
[26]
Cox AL, Coles AJ, Nortje J, Bradley PG, Chatfield DA, et al. (2006) An investigation of auto-reactivity after head injury. Journal of Neuroimmunology 174: 180–186. doi: 10.1016/j.jneuroim.2006.01.007
[27]
Sorokina EGE, Semenova ZBZ, Granstrem OKO, Karaseva OVO, Meshcheriakov SVS, et al. (2010) [S100B protein and autoantibodies to S100B protein in diagnostics of brain damage in craniocerebral trauma in children]. Zh Nevrol Psikhiatr Im S S Korsakova 110: 30–35.
[28]
Goryunova AVA, Bazarnaya NAN, Sorokina EGE, Semenova NYN, Globa OVO, et al. (2007) Glutamate receptor autoantibody concentrations in children with chronic post-traumatic headache. Neurosci Behav Physiol 37: 761–764. doi: 10.1007/s11055-007-0079-3
[29]
Tanriverdi F, De Bellis A, Bizzarro A, Sinisi AA, Bellastella G, et al. (2008) Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? European Journal of Endocrinology 159: 7–13. doi: 10.1530/eje-08-0050
[30]
Tanriverdi F, De Bellis A, Battaglia M, Bellastella G, Bizzarro A, et al. (2010) Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity? European Journal of Endocrinology 162: 861–867. doi: 10.1530/eje-09-1024
[31]
Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, et al. (2013) Consequences of Repeated Blood-Brain Barrier Disruption in Football Players. PLoS ONE 8: e56805. doi: 10.1371/journal.pone.0056805
[32]
Middeldorp J, Hol EM (2011) GFAP in health and disease. Progress in Neurobiology 93: 421–443. doi: 10.1016/j.pneurobio.2011.01.005
[33]
Wilson JT, Pettigrew LE, Teasdale GM (1998) Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma 15: 573–585. doi: 10.1089/neu.1998.15.573
[34]
Teasdale GM, Pettigrew LE, Wilson JT, Murray G, Jennett B (1998) Analyzing outcome of treatment of severe head injury: a review and update on advancing the use of the Glasgow Outcome Scale. J Neurotrauma 15: 587–597. doi: 10.1089/neu.1998.15.587
[35]
Williams AJ, Ling GSF, Tortella FC (2006) Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neuroscience letters 408: 183–188. doi: 10.1016/j.neulet.2006.08.086
[36]
Liu MC, Kobeissy F, Zheng W, Zhang Z, Hayes RL, et al. (2011) Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions. ASN Neuro 3: e00051. doi: 10.1042/an20100012
[37]
Zoltewicz JS, Scharf D, Yang B, Chawla A, Newsom KJ, et al. (2012) Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury. BMI 7: 71–79. doi: 10.4137/bmi.s9873
[38]
Nesvizhskii AI, Keller A, Kolker E, Ruedi A (2012) A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Anal Chem 75: 4646–4658. doi: 10.1021/ac0341261
[39]
Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, et al. (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14: 1289–1298. doi: 10.1007/s10495-009-0405-z
[40]
Martinez JA, Zhang Z, Svetlov SI, Hayes RL, Wang KK, et al. (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis 15: 1480–1493. doi: 10.1007/s10495-010-0526-4
[41]
Zoltewicz JS, Mondello S, Yang B, Newsom KJ, Kobeissy F, et al. (2013) Biomarkers track damage after graded injury severity in a rat model of penetrating brain injury. J Neurotrauma 30: 1161–1169. doi: 10.1089/neu.2012.2762
[42]
Guingab-Cagmat J, Newsom K, Vakulenko A, Cagmat E, Kobeissy FH, et al. (2012) In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis 33: 3786–3797. doi: 10.1002/elps.201200326
[43]
Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, et al. (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. NeuroReport 9: 2437–2442. doi: 10.1097/00001756-199808030-00002
[44]
Pike BR, Flint J, Dutta S, Johnson E, Wang KK, et al. (2001) Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78: 1297–1306. doi: 10.1046/j.1471-4159.2001.00510.x
[45]
Wang KK (2000) Calpain and caspase: can you tell the difference? by kevin K.W. WangVol. 23, 20–26 [In Process Citation]. Trends Neurosci 23: 59. doi: 10.1016/s0166-2236(99)01536-2
[46]
Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, et al. (2010) Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci 31: 722–732. doi: 10.1111/j.1460-9568.2010.07097.x
[47]
Fujita K, Kato T, Yamauchi M, Ando M, Honda M, et al. (1998) Increases in fragmented glial fibrillary acidic protein levels in the spinal cords of patients with amyotrophic lateral sclerosis. Neurochemical research 23: 169–174.
[48]
Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, et al. (2012) Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma 29: 1096–1104. doi: 10.1089/neu.2011.2092
[49]
Deng SX, Hanson E, Sanz I (2000) In vivo cell penetration and intracellular transport of anti-Sm and anti-La autoantibodies. Int Immunol 12: 415–423. doi: 10.1093/intimm/12.4.415
[50]
Buffo A, Rite I, Tripathi P, Lepier A, Colak D, et al. (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 105: 3581–3586. doi: 10.1073/pnas.0709002105
[51]
Levin EC, Acharya NK, Han M, Zavareh SB, Sedeyn JC, et al. (2010) Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood–brain barrier breakdown. Brain research 1345: 221–232. doi: 10.1016/j.brainres.2010.05.038
[52]
Tanaka JJ, Nakamura KK, Takeda MM, Tada KK, Suzuki HH, et al. (1989) Enzyme-linked immunosorbent assay for human autoantibody to glial fibrillary acidic protein: higher titer of the antibody is detected in serum of patients with Alzheimer’s disease. Acta Neurologica Scandinavica 80: 554–560. doi: 10.1111/j.1600-0404.1989.tb03926.x
[53]
Mecocci P, Parnetti L, Romano G, Scarelli A, Chionne F, et al. (1995) Serum anti-GFAP and anti-S100 autoantibodies in brain aging, Alzheimer’s disease and vascular dementia. J Neuroimmunol 57: 165–170. doi: 10.1016/0165-5728(94)00180-v
[54]
Mecocci P, Parnetti L, Donato R, Santucci C, Santucci A, et al. (1992) Serum autoantibodies against glial fibrillary acidic protein in brain aging and senile dementias. Brain, Behaviour, And Immunity 6: 286–292. doi: 10.1016/0889-1591(92)90049-t
[55]
Kamchatov PR, Ruleva N, Dugin SF, Buriachkovskaia LI, Chugunov AV, et al. (2009) [Neurospecific proteins and autoantibodies in serum of patients with acute ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 109: 69–72.
[56]
Gómez-Touri?o I, Cami?a-Darriba F, Otero-Romero I, Rodríguez MA, Hernández-Fernández A, et al. (2010) Autoantibodies to glial fibrillary acid protein and S100beta in diabetic patients. Diabet Med 27: 246–248. doi: 10.1111/j.1464-5491.2009.02911.x
[57]
Poletaev ABA, Morozov SGS, Gnedenko BBB, Zlunikin VMV, Korzhenevskey DAD (2000) Serum anti-S100b, anti-GFAP and anti-NGF autoantibodies of IgG class in healthy persons and patients with mental and neurological disorders. Autoimmunity 32: 33–38. doi: 10.3109/08916930008995985
[58]
Górny MM, Losy JJ, Wender MM (1990) [Anti-GFAP antibodies in the cerebrospinal fluid of patients with multiple sclerosis and other neurologic diseases]. Neurol Neurochir Pol 24: 17–22.
[59]
Singh VKV, Warren RR, Averett RR, Ghaziuddin MM (1997) Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr Neurol 17: 88–90. doi: 10.1016/s0887-8994(97)00045-3
[60]
Moneim IA, Shamy MY, el-Gazzar RM, El-Fawal HA (1999) Autoantibodies to neurofilaments (NF), glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) in workers exposed to lead. The Journal Of The Egyptian Public Health Association 74: 121–138.
[61]
Wei P, Zhang W, Yang L-S, Zhang H-S, Xu X-E, et al. (2013) Serum GFAP autoantibody as an ELISA-detectable glioma marker. Tumor Biol 34: 2283–2292. doi: 10.1007/s13277-013-0770-7
[62]
Darrah E, Andrade F (2012) NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 3: 428. doi: 10.3389/fimmu.2012.00428
[63]
Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, et al. (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349: 139–145. doi: 10.1056/nejmoa022328
[64]
Kuhle J, Pohl C, Mehling M, Edan G, Freedman MS, et al. (2007) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356: 371–378. doi: 10.1056/nejmoa063602
[65]
Pelayo R, Tintoré M, Montalban X, Rovira A, Espejo C, et al. (2007) Antimyelin antibodies with no progression to multiple sclerosis. N Engl J Med 356: 426–428. doi: 10.1056/nejmc062467
[66]
Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, et al. (2013) GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma 30: 1490–1497. doi: 10.1089/neu.2013.2883
[67]
Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, et al. (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59: 471–483. doi: 10.1016/j.annemergmed.2011.08.021
[68]
Lumpkins KM, Bochicchio GV, Keledjian K, Simard JM, McCunn M, et al. (2008) Glial Fibrillary Acidic Protein is Highly Correlated With Brain Injury. The Journal of Trauma: Injury, Infection, and Critical Care 65: 778–782–discussion782–784. doi: 10.1097/ta.0b013e318185db2d