MYB-type transcription factors (TFs) play essential roles in plant growth, development and respond to environmental stresses. Role of MYB-related TFs of rice in drought stress tolerance is not well documented. Here, we report the isolation and characterization of a novel MYB-related TF, OsMYB48-1, of rice. Expression of OsMYB48-1 was strongly induced by polyethylene glycol (PEG), abscisic acid (ABA), H2O2, and dehydration, while being slightly induced by high salinity and cold treatment. The OsMYB48-1 protein was localized in the nucleus with transactivation activity at the C terminus. Overexpression of OsMYB48-1 in rice significantly improved tolerance to simulated drought and salinity stresses caused by mannitol, PEG, and NaCl, respectively, and drought stress was caused by drying the soil. In contrast to wild type plants, the overexpression lines exhibited reduced rate of water loss, lower malondialdehyde (MDA) content and higher proline content under stress conditions. Moreover, overexpression plants were hypersensitive to ABA at both germination and post-germination stages and accumulated more endogenous ABA under drought stress conditions. Further studies demonstrated that overexpression of OsMYB48-1 could regulate the expression of some ABA biosynthesis genes (OsNCED4, OsNCED5), early signaling genes (OsPP2C68, OSRK1) and late responsive genes (RAB21, OsLEA3, RAB16C and RAB16D) under drought stress conditions. Collectively, these results suggested that OsMYB48-1 functions as a novel MYB-related TF which plays a positive role in drought and salinity tolerance by regulating stress-induced ABA synthesis.
References
[1]
Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A 106: 6410–6415. doi: 10.1073/pnas.0901940106
[2]
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124: 509–525. doi: 10.1007/s10265-011-0412-3
[3]
Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15–S45.
[4]
Wang ZY, Xiong L, Li W, Zhu JK, Zhu J (2011) The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell 23: 1971–1984. doi: 10.1105/tpc.110.081943
[5]
Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57: 781–803. doi: 10.1146/annurev.arplant.57.032905.105444
[6]
Hu H, You J, Fang Y, Zhu X, Qi Z, et al. (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169–181. doi: 10.1007/s11103-008-9309-5
[7]
Huang GT, Ma SL, Bai LP, Zhang L, Ma H, et al. (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39: 969–987. doi: 10.1007/s11033-011-0823-1
[8]
Singh K, Foley R, O?ate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5: 430–436. doi: 10.1016/s1369-5266(02)00289-3
[9]
Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, et al. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153: 185–197. doi: 10.1104/pp.110.154773
[10]
Oh S-J, Kim YS, Kwon C-W, Park HK, Jeong JS, et al. (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150: 1368–1379. doi: 10.1104/pp.109.137554
[11]
Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158: 1755–1768. doi: 10.1104/pp.111.190389
[12]
Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148: 1938–1952. doi: 10.1104/pp.108.128199
[13]
Chen Y, Yang X, He K, Liu M, Li J, et al. (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60: 107–124. doi: 10.1007/s11103-005-2910-y
[14]
Du H, Zhang L, Liu L, Tang X-F, Yang W-J, et al. (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow) 74: 1–11. doi: 10.1134/s0006297909010015
[15]
Abe H, Urao T, Ito T, Seki M, Shinozaki K, et al. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78. doi: 10.1105/tpc.006130
[16]
Denekamp M (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol 132: 1415–1423. doi: 10.1104/pp.102.019273
[17]
Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, et al. (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151: 275–289. doi: 10.1104/pp.109.144220
[18]
Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27: 1677–1686. doi: 10.1007/s00299-008-0587-9
[19]
Vannini C, Campa M, Iriti M, Genga A, Faoro F, et al. (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173: 231–239. doi: 10.1016/j.plantsci.2007.05.007
[20]
Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, et al. (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37: 115–127. doi: 10.1046/j.1365-313x.2003.01938.x
[21]
El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, et al. (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7: e52030. doi: 10.1371/journal.pone.0052030
[22]
Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63: 2541–2556. doi: 10.1093/jxb/err431
[23]
Shin D, Moon SJ, Han S, Kim BG, Park SR, et al. (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155: 421–432. doi: 10.1104/pp.110.163634
[24]
Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ashwin G, Parida A (2012) A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J Exp Bot 63: 4549–4561. doi: 10.1093/jxb/ers135
[25]
Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, et al. (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153: 145–158. doi: 10.1104/pp.110.153015
[26]
Wang H, Zhang H, Gao F, Li J, Li Z (2007) Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet 115: 1109–1126. doi: 10.1007/s00122-007-0637-7
[27]
Duan J, Zhang M, Zhang H, Xiong H, Liu P, et al. (2012) OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci 196: 143–151. doi: 10.1016/j.plantsci.2012.08.003
[28]
Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282. doi: 10.1046/j.1365-313x.1994.6020271.x
[29]
Wang Z, Chen C, Xu Y, Jiang R, Han Y, et al. (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol Biol Rep 22: 409–417. doi: 10.1007/bf02772683
[30]
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207. doi: 10.1007/bf00018060
[31]
Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234: 331–345. doi: 10.1007/s00425-011-1403-2
[32]
Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127: 315–323. doi: 10.1104/pp.127.1.315
[33]
Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221–227. doi: 10.1093/jxb/erl164
[34]
Dai X, Xu Y, Ma Q, Xu W, Wang T, et al. (2007) Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis. Plant Physiol 143: 1739–1751. doi: 10.1104/pp.106.094532
[35]
Ma Q, Dai X, Xu Y, Guo J, Liu Y, et al. (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150: 244–256. doi: 10.1104/pp.108.133454
[36]
Lu C-A, Ho T-hD, Ho S-L, Yu S-M (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-amylase gene expression. Plant Cell 14: 1963–1980. doi: 10.1105/tpc.001735
[37]
Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135: 1514–1525. doi: 10.1104/pp.104.041459
[38]
Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, et al. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47: 141–153. doi: 10.1093/pcp/pci230
[39]
Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, et al. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51: 617–630. doi: 10.1111/j.1365-313x.2007.03168.x
[40]
Wang H, Hao J, Chen X, Hao Z, Wang X, et al. (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65: 799–815. doi: 10.1007/s11103-007-9244-x
[41]
Yue Y, Zhang M, Zhang J, Tian X, Duan L, et al. (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63: 3741–3748. doi: 10.1093/jxb/ers069
[42]
Hwang S-G, Chen H-C, Huang W-Y, Chu Y-C, Shii C-T, et al. (2010) Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci 178: 12–22. doi: 10.1016/j.plantsci.2009.09.014
[43]
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, et al. (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27: 325–333. doi: 10.1046/j.1365-313x.2001.01096.x
[44]
Xue T, Wang D, Zhang S, Ehlting J, Ni F, et al. (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9: 1–21. doi: 10.1186/1471-2164-9-550
[45]
Chae M-J, Lee J-S, Nam M-H, Cho K, Hong J-Y, et al. (2007) A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol 63: 151–169. doi: 10.1007/s11103-006-9079-x
[46]
RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26: 1839–1859. doi: 10.1007/s00299-007-0371-2
[47]
Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115: 35–46. doi: 10.1007/s00122-007-0538-9
[48]
Chen Z, Hong X, Zhang H, Wang Y, Li X, et al. (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43: 273–283. doi: 10.1111/j.1365-313x.2005.02452.x
[49]
Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol 108: 1387–1394.
[50]
Zhang L, Zhao G, Xia C, Jia J, Liu X, et al. (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63: 5873–5885. doi: 10.1093/jxb/ers237