[1] | Fambrough D, McClure K, Kazlauskas A, Lander ES (1999) Diverse Signaling Pathways Activated by Growth Factor Receptors Induce Broadly Overlapping, Rather Than Independent, Sets of Genes. Cell 97: 727–741. doi: 10.1016/s0092-8674(00)80785-0
|
[2] | Brandman O, Meyer T (2008) Feedback Loops Shape Cellular Signals in Space and Time. Science 322: 390–395. doi: 10.1126/science.1160617
|
[3] | Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185. doi: 10.1016/0092-8674(95)90401-8
|
[4] | Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they're apart. Science 326: 1220–1224. doi: 10.1126/science.1175668
|
[5] | Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298: 1241–1245. doi: 10.1126/science.1071914
|
[6] | Ren H, Zhang H (2010) Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans. Dev Biol 345: 144–155. doi: 10.1016/j.ydbio.2010.07.002
|
[7] | Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12: 9–18. doi: 10.1038/sj.cr.7290105
|
[8] | Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.
|
[9] | Ebisuya M, Kondoh K, Nishida E (2005) The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118: 2997–3002. doi: 10.1242/jcs.02505
|
[10] | Seedorf K (1995) Intracellular signaling by growth factors. Metabolism 44: 24–32. doi: 10.1016/0026-0495(95)90217-1
|
[11] | Herbst KJ, Allen MD, Zhang J (2011) Spatiotemporally regulated protein kinase A activity is a critical regulator of growth factor-stimulated extracellular signal-regulated kinase signaling in PC12 cells. Mol Cell Biol 31: 4063–4075. doi: 10.1128/mcb.05459-11
|
[12] | Ganesan A, Zhang J (2012) How cells process information: quantification of spatiotemporal signaling dynamics. Protein Sci 21: 918–928. doi: 10.1002/pro.2089
|
[13] | Manning BD, Cantley LC (2007) AKT/PKB signaling: Navigating downstream. Cell 129: 1261–1274. doi: 10.1016/j.cell.2007.06.009
|
[14] | Greene LA, Tischler AS (1976) Establishment of a Noradrenergic Clonal Line of Rat Adrenal Pheochromocytoma Cells Which Respond to Nerve Growth-Factor. Proceedings of the National Academy of Sciences of the United States of America 73: 2424–2428. doi: 10.1073/pnas.73.7.2424
|
[15] | Segal RA (2003) Selectivity in neurotrophin signaling: theme and variations. Annu Rev Neurosci 26: 299–330. doi: 10.1146/annurev.neuro.26.041002.131421
|
[16] | Huff K, End D, Guroff G (1981) Nerve Growth Factor-Induced Alteration in the Response of Pc12 Pheochromocytoma Cells to Epidermal Growth-Factor. Journal of Cell Biology 88: 189–198. doi: 10.1083/jcb.88.1.189
|
[17] | Gotoh Y, Nishida E, Yamashita T, Hoshi M, Kawakami M, et al. (1990) Microtubule-Associated-Protein (Map) Kinase Activated by Nerve Growth-Factor and Epidermal Growth-Factor in Pc12 Cells - Identity with the Mitogen-Activated Map Kinase of Fibroblastic Cells. European Journal of Biochemistry 193: 661–669. doi: 10.1111/j.1432-1033.1990.tb19384.x
|
[18] | Wang L, Liang Z, Li G (2011) Rab22 controls NGF signaling and neurite outgrowth in PC12 cells. Mol Biol Cell 22: 3853–3860. doi: 10.1091/mbc.e11-03-0277
|
[19] | Liu J, Lamb D, Chou MM, Liu YJ, Li G (2007) Nerve growth factor-mediated neurite outgrowth via regulation of Rab5. Mol Biol Cell 18: 1375–1384. doi: 10.1091/mbc.e06-08-0725
|
[20] | Qiu MS, Green SH (1992) PC12 Cell Neuronal Differentiation Is Associated with Prolonged P21(Ras) Activity and Consequent Prolonged Erk Activity. Neuron 9: 705–717. doi: 10.1016/0896-6273(92)90033-a
|
[21] | Vaudry D, Stork PJS, Lazarovici P, Eiden LE (2002) Signaling Pathways for PC12 Cell Differentiation: Making the Right Connections. Science 296: 1648–1649. doi: 10.1126/science.1071552
|
[22] | Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7: 365–373. doi: 10.1038/ncb1233
|
[23] | Traverse S, Gomez N, Paterson H, Marshall C, Cohen P (1992) Sustained Activation of the Mitogen-Activated Protein (Map) Kinase Cascade May Be Required for Differentiation of Pc12 Cells - Comparison of the Effects of Nerve Growth-Factor and Epidermal Growth-Factor. Biochemical Journal 288: 351–355.
|
[24] | Herbst KJ, Allen MD, Zhang J (2011) Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells. Molecular and Cellular Biology 31: 4063–4075. doi: 10.1128/mcb.05459-11
|
[25] | Chung J, Kubota H, Ozaki Y, Uda S, Kuroda S (2010) Timing-dependent actions of NGF required for cell differentiation. PLoS One 5: e9011. doi: 10.1371/journal.pone.0009011
|
[26] | New L, Li Y, Ge B, Zhong H, Mansbridge J, et al. (2001) SB203580 promotes EGF-stimulated early morphological differentiation in PC12 cell through activating ERK pathway. J Cell Biochem 83: 585–596. doi: 10.1002/jcb.1253
|
[27] | Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, et al. (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275: 12200–12206. doi: 10.1074/jbc.275.16.12200
|
[28] | Subramaniam S, Zirrgiebel U, von Bohlen Und Halbach O, Strelau J, Laliberte C, et al. (2004) ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 165: 357–369. doi: 10.1083/jcb.200403028
|
[29] | Cheung EC, Slack RS (2004) Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE 2004: PE45. doi: 10.1126/stke.2512004pe45
|
[30] | Heasley LE, Johnson GL (1992) The beta-PDGF receptor induces neuronal differentiation of PC12 cells. Mol Biol Cell 3: 545–553. doi: 10.1091/mbc.3.5.545
|
[31] | Traverse S, Seedorf K, Paterson H, Marshall CJ, Cohen P, et al. (1994) EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr Biol 4: 694–701. doi: 10.1016/s0960-9822(00)00154-8
|
[32] | Nguyen TT, Scimeca JC, Filloux C, Peraldi P, Carpentier JL, et al. (1993) Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J Biol Chem 268: 9803–9810. doi: 10.1210/endo.132.6.8389283
|
[33] | Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12: 104–117. doi: 10.1038/nrm3048
|
[34] | Ji Y, Lu Y, Yang F, Shen W, Tang TT, et al. (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13: 302–309. doi: 10.1038/nn.2505
|
[35] | Pollock R, Clackson T (2002) Dimerizer-regulated gene expression. Curr Opin Biotechnol 13: 459–467. doi: 10.1016/s0958-1669(02)00373-7
|
[36] | Inoue T, Heo WD, Grimley JS, Wandless TJ, Meyer T (2005) An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods 2: 415–418. doi: 10.1038/nmeth763
|
[37] | Castellano F, Chavrier P (2000) Inducible membrane recruitment of small GTP-binding proteins by rapamycin-based system in living cells. Methods Enzymol 325: 285–295. doi: 10.1016/s0076-6879(00)25450-5
|
[38] | Karginov AV, Ding F, Kota P, Dokholyan NV, Hahn KM (2010) Engineered allosteric activation of kinases in living cells. Nat Biotechnol 28: 743–747. doi: 10.1038/nbt.1639
|
[39] | Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, et al. (2010) Light Regulation of Protein Dimerization and Kinase Activity in Living Cells Using Photocaged Rapamycin and Engineered FKBP. J Am Chem Soc.
|
[40] | Gautier A, Deiters A, Chin JW (2011) Light-activated kinases enable temporal dissection of signaling networks in living cells. J Am Chem Soc 133: 2124–2127. doi: 10.1021/ja1109979
|
[41] | Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301: 1541–1544. doi: 10.1126/science.1086810
|
[42] | Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, et al. (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461: 104–108. doi: 10.1038/nature08241
|
[43] | Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, et al. (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9: 379–384. doi: 10.1038/nmeth.1904
|
[44] | Strickland D, Yao X, Gawlak G, Rosen MK, Gardner KH, et al. (2010) Rationally improving LOV domain-based photoswitches. Nat Methods 7: 623–626. doi: 10.1038/nmeth.1473
|
[45] | Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, et al. (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7: 973–975. doi: 10.1038/nmeth.1524
|
[46] | Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10: 249–252. doi: 10.1038/nmeth.2360
|
[47] | Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461: 997–1001. doi: 10.1038/nature08446
|
[48] | Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20: 1041–1044. doi: 10.1038/nbt734
|
[49] | Toettcher JE, Weiner OD, Lim WA (2013) Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155: 1422–1434. doi: 10.1016/j.cell.2013.11.004
|
[50] | Wend S, Wagner HJ, Muller K, Zurbriggen MD, Weber W, et al. (2013) Optogenetic Control of Protein Kinase Activity in Mammalian Cells. ACS Synth Biol.
|
[51] | Chen X, Resh MD (2001) Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization. Journal of Biological Chemistry 276: 34617–34623. doi: 10.1074/jbc.m103995200
|
[52] | Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369: 411–414. doi: 10.1038/369411a0
|
[53] | Liu H, Yu X, Li K, Klejnot J, Yang H, et al. (2008) Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis. Science 322: 1535–1539. doi: 10.1126/science.1163927
|
[54] | Lidke DS, Huang F, Post JN, Rieger B, Wilsbacher J, et al. (2010) ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation. J Biol Chem 285: 3092–3102. doi: 10.1074/jbc.m109.064972
|
[55] | Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, et al. (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18: 664–674. doi: 10.1093/emboj/18.3.664
|
[56] | Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12: 915–927.
|
[57] | Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26: 397–406. doi: 10.1016/j.ntt.2004.02.006
|
[58] | Wood KW, Qi H, D'Arcangelo G, Armstrong RC, Roberts TM, et al. (1993) The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci U S A 90: 5016–5020. doi: 10.1073/pnas.90.11.5016
|
[59] | Saito TH, Uda S, Tsuchiya T, Ozaki Y, Kuroda S (2013) Temporal decoding of MAP kinase and CREB phosphorylation by selective immediate early gene expression. PLoS One 8: e57037. doi: 10.1371/journal.pone.0057037
|
[60] | Watanabe K, Akimoto Y, Yugi K, Uda S, Chung J, et al. (2012) Latent process genes for cell differentiation are common decoders of neurite extension length. J Cell Sci 125: 2198–2211. doi: 10.1242/jcs.097709
|
[61] | Kohn AD, Takeuchi F, Roth RA (1996) Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271: 21920–21926. doi: 10.1074/jbc.271.36.21920
|
[62] | Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48: 463–465. doi: 10.2144/000113418
|
[63] | Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, et al. (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58: 167–176. doi: 10.1002/cyto.a.20022
|