全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Intraspecific Differences in Lipid Content of Calanoid Copepods across Fine-Scale Depth Ranges within the Photic Layer

DOI: 10.1371/journal.pone.0092935

Full-Text   Cite this paper   Add to My Lib

Abstract:

Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex) are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12–15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea), Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea), and Calanus glacialis C5 (Arctic). We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy.

References

[1]  Mauchline J, Blaxter JHS, Tyler PA (1998) The Biology of calanoid copepods. Advances in Marine Biology. Vol 33. San Diego, CA: Academic Press. 710 p.
[2]  Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307: 273–306. doi: 10.3354/meps307273
[3]  Lee RF, Hirota J, Barnett AM (1971) Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Research and Oceanographic Abstracts 18: 1147–1165. doi: 10.1016/0011-7471(71)90023-4
[4]  Kattner G, Hagen W (2009) Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In: Arts MT, Brett MT, Kainz M, editors. Lipids in Aquatic Ecosystems. New York: Springer. pp 257–280.
[5]  Miller CB, Morgan CA, Prahl FG, Sparrow MA (1998) Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol Oceanogr 43: 488–497. doi: 10.4319/lo.1998.43.3.0488
[6]  Miller CB, Crain JA, Morgan CA (2000) Oil storage variability in Calanus finmarchicus. ICES J Mar Sci 57: 1786–1799. doi: 10.1006/jmsc.2000.0975
[7]  Visser AW, Jónasdóttir SH (1999) Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish Oceanogr 8: 100–106. doi: 10.1046/j.1365-2419.1999.00001.x
[8]  Campbell RW, Dower JF (2003) Role of lipids in the maintenance of neutral buoyancy by zooplankton. Mar Ecol Prog Ser 263: 93–99. doi: 10.3354/meps263093
[9]  Irigoien X (2004) Some ideas about the role of lipids in the life cycle of Calanus finmarchicus. J Plankton Res 26: 259–263. doi: 10.1093/plankt/fbh030
[10]  Pond DW, Tarling GA (2011) Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol Oceanogr 56: 1310–1318. doi: 10.4319/lo.2011.56.4.1310
[11]  Pond DW (2012) The physical properties of lipids and their role in controlling the distribution of zooplankton in the oceans. J Plankton Res 34: 443–453. doi: 10.1093/plankt/fbs027
[12]  Yayanos AA, Benson AA, Nevenzel JC (1978) The pressure-volume-temperature (PVT) properties of a lipid mixture from a marine copepod Calanus plumchrus: implications for buoyancy and sound scattering. Deep-Sea Res 25: 257–268. doi: 10.1016/0146-6291(78)90591-x
[13]  Lee RF (1974) Lipid composition of the copepod Calanus hyperboreus from the Arctic Ocean. Changes with depth and season. Mar Biol 26: 313–318. doi: 10.1007/bf00391515
[14]  Jónasdóttir SH (1999) Lipid content of Calanus finmarchicus during overwintering in the Faroe-Shetland Channel. Fish Oceanogr 8: 61–72. doi: 10.1046/j.1365-2419.1999.00003.x
[15]  Hays GC, Kennedy H, Frost BW (2001) Individual variability in diel vertical migration of a marine copepod: why some individuals remain at depth when others migrate. Limnol Oceanogr 46: 2050–2054. doi: 10.4319/lo.2001.46.8.2050
[16]  Lischka S, Hagen W (2007) Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar Biol 150: 443–454. doi: 10.1007/s00227-006-0359-4
[17]  Paffenh?fer GA, Mazzocchi MG (2003) Vertical distribution of subtropical epiplanktonic copepods. J Plankton Res 25: 1139–1156. doi: 10.1093/plankt/25.9.1139
[18]  Jiang H, Strickler JR (2005) Mass density contrast in relation to the feeding currents in calanoid copepods. J Plankton Res 27: 1003–1012. doi: 10.1093/plankt/fbi087
[19]  Reiss Z, Hottinger L (1984) The Gulf of Aqaba: Ecological Micropaleontology. Ecological studies. Vol. 50. Berlin: Springer-Verlag. 354 p.
[20]  Sommer U, Berninger UG, B?ttger-Schnack R, Hansen T, Stibor H, et al. (2002) Grazing during the spring bloom in the Gulf of Aquaba and the Northern Red Sea. Mar Ecol Prog Ser 239: 251–261. doi: 10.3354/meps239251
[21]  Echelman T, Fishelson L (1990) Surface zooplankton dynamics and community structure in the Gulf of Aqaba (Eilat), Red Sea. Mar Biol 107: 179–190. doi: 10.1007/bf01313255
[22]  B?ttger-Schnack R, Schnack D, Hagen W (2008) Microcopepod community structure in the Gulf of Aqaba and northern Red Sea, with special reference to Oncaeidae. J Plankton Res 30: 529–550. doi: 10.1093/plankt/fbn018
[23]  Azov Y (1991) Eastern Mediterranean - a marine desert? Mar Pollut Bull 23: 225–232. doi: 10.1016/0025-326x(91)90679-m
[24]  Yacobi YZ, Zohary T, Kress N, Hecht A, Robarts RD, et al. (1995) Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass. J Marine Syst 6: 179–190. doi: 10.1016/0924-7963(94)00028-a
[25]  Mazzocchi MG, Christou ED, Fragopoulu N, Siokou-Frangou I (1997) Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean): I. General aspects. Oceanol Acta 20: 521–535.
[26]  Siokou-Frangou I, Christou ED, Fragopoulu N, Mazzocchi MG (1997) Mesozooplankton distribution from Sicily to Cyprus (eastern Mediterranean): II. Copepod assemblages. Oceanol Acta 20: 537–548.
[27]  Cottier FR, Nilsen F, Skogseth R, Tverberg V, Skarehamar J, et al. (2010) Arctic fjords: a review of the oceanographic environment and dominant physical processes. Geog Soc Spec Publ 344: 35–50. doi: 10.1144/sp344.4
[28]  Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, et al. (2010) Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55: 831–845. doi: 10.4319/lo.2009.55.2.0831
[29]  Leu E, S?reide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog Oceanogr 90: 18–32. doi: 10.1016/j.pocean.2011.02.004
[30]  S?reide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16: 3154–3163. doi: 10.1111/j.1365-2486.2010.02175.x
[31]  Falk-Petersen S, Mayzaud P, Kattner G, Sargent JR (2009) Lipids and life strategy of Arctic Calanus. Mar Biol Res 5: 18–39. doi: 10.1080/17451000802512267
[32]  Frost BW, Fleminger A (1968) A revision of the genus Clausocalanus (Copepoda: Calanoida) with remarks on distributional patterns in diagnostic characters. Bull Scripps Inst Oceanogr Univ Calif 12: 1–235.
[33]  Bradford JM (1972) Systematics and ecology of New Zealand Central East coast plankton sampled at Kaikoura. N Z Oceanogr Inst Mem 54: 1–87.
[34]  Bj?rnberg TKS (1981) Copepoda. In: Boltovskoy D, editor. Atlas del Zooplancton del Atlantico Sudoccidental y métodos de trabajo con zooplancton marino. Mar del Plata, Argentina: INIDEP.pp 587–679.
[35]  Ohman MD (1996) Freezing and storage of copepod samples for the analysis of lipids. Mar Ecol Prog Ser 130: 295–298. doi: 10.3354/meps130295
[36]  Vogedes D, Varpe ?, S?reide JE, Graeve M, Berge J, et al. (2010) Lipid sac area as a proxy for individual lipid content of arctic calanoid copepods. J Plankton Res 32: 1471–1477. doi: 10.1093/plankt/fbq068
[37]  Lee RF, Hirota J (1973) Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol Oceanogr 18: 227–239. doi: 10.4319/lo.1973.18.2.0227
[38]  Sartoris FJ, Thomas DN, Cornils A, Schnack-Schiel B (2010) Buoyancy and diapause in Antarctic copepods: The role of ammonium accumulation. Limnol Oceanogr 55: 1860–1864. doi: 10.4319/lo.2010.55.5.1860
[39]  Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6: 65–70.
[40]  R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
[41]  Wheeler B (2010) lmPerm: Permutation tests for linear models. R package version 1.1–2. http://CRAN.R-project.org/package=lmPerm.
[42]  Dam HG, Peterson WT (1991) In situ feeding behavior of the copepod Temora longicornis: effects of seasonal changes in chlorophyll size fractions and female size. Mar Ecol Prog Ser 71: 113–123. doi: 10.3354/meps071113
[43]  Berges JA (1997) Ratios, regression statistics, and “spurious” correlations. Limnol Oceanogr 42: 1006–1007. doi: 10.4319/lo.1997.42.5.1006
[44]  Pearre S Jr (2003) Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol Rev 78: 1–79. doi: 10.1017/s146479310200595x
[45]  Strickler JR (1982) Calanoid copepods, feeding currents, and the role of gravity. Science 218: 158–160. doi: 10.1126/science.218.4568.158
[46]  Genin A, Jaffe JS, Reef R, Richter C, Franks PJS (2005) Swimming against the flow: a mechanism of zooplankton aggregation. Science 308: 860–862. doi: 10.1126/science.1107834
[47]  Paffenh?fer GA, Strickler JR, Alcaraz M (1982) Suspension-feeding by herbivorous calanoid copepods: a cinematographic study. Mar Biol 67: 193–199. doi: 10.1007/bf00401285
[48]  Koehl MAR, Strickler JR (1981) Copepod feeding currents: food capture at low Reynolds number. Limnol Oceanogr 26: 1062–1073. doi: 10.4319/lo.1981.26.6.1062
[49]  Mazzocchi MG, Paffenh?fer GA (1999) Swimming and feeding behavior of the planktonic copepod Clausocalanus furcatus. J Plankton Res 21: 1501–1518. doi: 10.1093/plankt/21.8.1501
[50]  Fragopoulu N, Lykakis JJ (1990) Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar Biol 104: 381–387. doi: 10.1007/bf01314340
[51]  Koski M, Jónasdóttir SH, Bag?ien E (2011) Biological processes in the North Sea: vertical distribution and reproduction of neritic copepods in relation to environmental factors. J Plankton Res 33: 63–84. doi: 10.1093/plankt/fbq084
[52]  Jónasdóttir SH, Koski M (2011) Biological processes in the North Sea: comparison of Calanus helgolandicus and Calanus finmarchicus vertical distribution and production. J Plankton Res 33: 85–103. doi: 10.1093/plankt/fbq085
[53]  Castro LR, Troncoso VA, Figueroa DR (2007) Fine-scale vertical distribution of coastal and offshore copepods in the Golfo de Arauco, central Chile, during the upwelling season. Progr Oceanogr 75: 486–500. doi: 10.1016/j.pocean.2007.08.012
[54]  Herman W (1983) Vertical distribution patterns of copepods, chlorophyll, and production in northeastern Baffin Bay. Limn Oceanogr 28: 709–719. doi: 10.4319/lo.1983.28.4.0709
[55]  Huntley M, Brooks ER (1982) Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar Biol 71: 23–31. doi: 10.1007/bf00396989
[56]  Castro LR, Bernal PA, Gonzales HE (1991) Vertical distribution of copepods and the utilization of the chlorophyll a-rich layer within Concepcion Bay, Chile. Estuar Coast Shelf Sci 32: 243–256. doi: 10.1016/0272-7714(91)90018-7
[57]  Giske J, Aksnes DL, Bali?o BM, Kaartvedt S, Lie U, et al. (1990) Vertical distribution and trophic interactions of zooplankton and fish in Masfjorden, Norway. Sarsia 75: 65–81.
[58]  Dupont N, Aksnes DL (2012) Effects of bottom depth and water clarity on the vertical distribution of Calanus spp. J Plankton Res 34: 263–266. doi: 10.1093/plankt/fbr096
[59]  Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31: 121–133. doi: 10.1093/plankt/fbn109
[60]  Incze LS, Hebert D, Wolff N, Oakey N, Dye D (2001) Changes in copepod distributions associated with increased turbulence from wind stress. Mar Ecol Prog Ser 213: 229–240. doi: 10.3354/meps213229
[61]  Lagadeuc Y, Bouté M, Dodson JJ (1997) Effect of vertical mixing on the vertical distribution of copepods in coastal waters. J Plankton Res 19: 1183–1204. doi: 10.1093/plankt/19.9.1183
[62]  Farstey V, Lazar B, Genin A (2002) Expansion and homogeneity of the vertical distribution of zooplankton in a very deep mixed layer. Mar Ecol Prog Ser 238: 91–100. doi: 10.3354/meps238091
[63]  Banse K (1964) On the vertical distribution of zooplankton in the sea. Progr Oceanogr 2: 53–125. doi: 10.1016/0079-6611(64)90003-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133