全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

TRAIL Deficiency Contributes to Diabetic Nephropathy in Fat-Fed ApoE-/- Mice

DOI: 10.1371/journal.pone.0092952

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background We recently demonstrated that TNF-related apoptosis-inducing ligand (TRAIL) is protective of diet-induced diabetes in mice. While TRAIL has been implicated in chronic kidney disease, its role in vivo in diabetic nephropathy is not clear. The present study investigated the role of TRAIL in the pathogenesis of diabetic nephropathy using TRAIL-/-ApoE-/- mice. Methods TRAIL-/-ApoE-/- and ApoE-/- mice were fed a high fat diet for 20 w. Plasma glucose and insulin levels were assessed over 0, 5, 8 and 20 w. At 20 w, markers of kidney function including creatinine, phosphate, calcium and cystatin C were measured. Changes in mRNA expression of MMPs, TIMP-1, IL-1β and IL-18 were assessed in the kidney. Functional and histological changes in kidneys were examined. Glucose and insulin tolerance tests were performed. Results TRAIL-/-ApoE-/- mice had significantly increased urine protein, urine protein:creatinine ratio, plasma phosphorous, and plasma cystatin C, with accelerated nephropathy. Histologically, increased extracellular matrix, mesangial expansion and mesangial cell proliferation in the glomeruli were observed. Moreover, TRAIL-/-ApoE-/- kidneys displayed loss of the brush border and disorganisation of tubular epithelium, with increased fibrosis. TRAIL-deficient kidneys also had increased expression of MMPs, TIMP-1, PAI-1, IL-1β and IL-18, markers of renal injury and inflammation. Compared with ApoE-/- mice, TRAIL-/-ApoE-/- mice displayed insulin resistance and type-2 diabetic features with reduced renal insulin-receptor expression. Conclusions Here, we show that TRAIL-deficiency in ApoE-/- mice exacerbates nephropathy and insulin resistance. Understanding TRAIL signalling in kidney disease and diabetes, may therefore lead to novel strategies for the treatment of diabetic nephropathy.

References

[1]  Maisonneuve P, Agodoa L, Gellert R, Stewart JH, Buccianti G, et al. (2000) Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. American Journal of Kidney Diseases: the official journal of the National Kidney Foundation 35: 157–165. doi: 10.1016/s0272-6386(00)70316-7
[2]  Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nature Clinical Practice Endocrinology & Metabolism 4: 444–452. doi: 10.1038/ncpendmet0894
[3]  Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, et al. (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19: 2003–2014. doi: 10.1038/cdd.2012.90
[4]  Azahri NS, Kavurma MM (2013) Transcriptional regulation of tumour necrosis factor-related apoptosis-inducing ligand. Cell Mol Life Sci 70: 3617–3629. doi: 10.1007/s00018-013-1264-x
[5]  Di Pietro R, Zauli G (2004) Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol 201: 331–340. doi: 10.1002/jcp.20099
[6]  Kavurma MM, Bennett MR (2008) Expression, regulation and function of trail in atherosclerosis. Biochem Pharmacol 75: 1441–1450. doi: 10.1016/j.bcp.2007.10.020
[7]  Kavurma MM, Tan NY, Bennett MR (2008) Death receptors and their ligands in atherosclerosis. Arterioscler Thromb Vasc Biol 28: 1694–1702. doi: 10.1161/atvbaha.107.155143
[8]  Lorz C, Benito-Martin A, Boucherot A, Ucero AC, Rastaldi MP, et al. (2008) The death ligand TRAIL in diabetic nephropathy. J Am Soc Nephrol 19: 904–914. doi: 10.1681/asn.2007050581
[9]  Benito-Martin A, Ucero AC, Santamaria B, Lorz C, Kretzler M, et al. (2009) [Transcriptomics illustrate a deadly TRAIL to diabetic nephropathy]. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia 29: 13–19.
[10]  Di Bartolo BA, Chan J, Bennett MR, Cartland S, Bao S, et al. (2011) TNF-related apoptosis-inducing ligand (TRAIL) protects against diabetes and atherosclerosis in Apoe (-/-) mice. Diabetologia 54: 3157–3167. doi: 10.1007/s00125-011-2308-0
[11]  Liabeuf S, Barreto DV, Barreto FC, Chasseraud M, Brazier M, et al. (2010) The circulating soluble TRAIL is a negative marker for inflammation inversely associated with the mortality risk in chronic kidney disease patients. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 25: 2596–2602. doi: 10.1093/ndt/gfq042
[12]  Chasseraud M, Liabeuf S, Mozar A, Mentaverri R, Brazier M, et al. (2011) Tumor necrosis factor-related apoptosis-inducing ligand and vascular calcification. Therapeutic apheresis and dialysis: official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy 15: 140–146. doi: 10.1111/j.1744-9987.2010.00886.x
[13]  Van Vliet A, Baelde HJ, Vleming LJ, de Heer E, Bruijn JA (2001) Distribution of fibronectin isoforms in human renal disease. J Pathol 193: 256–262. doi: 10.1002/1096-9896(2000)9999:9999<::aid-path783>3.3.co;2-g
[14]  Eddy AA (1996) Molecular insights into renal interstitial fibrosis. Journal of the American Society of Nephrology: JASN 7: 2495–2508.
[15]  Yu XQ, Fan JM, Nikolic-Paterson DJ, Yang N, Mu W, et al. (1999) IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat. Am J Path 154: 833–841. doi: 10.1016/s0002-9440(10)65330-8
[16]  Yu Q, Vazquez R, Khojeini EV, Patel C, Venkataramani R, et al. (2009) IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice. Am J Physiol Heart Circ Physiol 297: H76–85. doi: 10.1152/ajpheart.01285.2008
[17]  Chang YH, Lin KD, He SR, Hsieh MC, Hsiao JY, et al. (2011) Serum osteoprotegerin and tumor necrosis factor related apoptosis inducing-ligand (TRAIL) are elevated in type 2 diabetic patients with albuminuria and serum osteoprotegerin is independently associated with the severity of diabetic nephropathy. Metabolism 60: 1064–1069. doi: 10.1016/j.metabol.2010.11.002
[18]  Malyszko J, Przybylowski P, Koc-Zorawska E, Mysliwiec M (2011) Tumor necrosis factor-related apoptosis-inducing ligand is a marker of kidney function and inflammation in heart and kidney transplant recipients. Transplant Proc 43: 1877–1880. doi: 10.1016/j.transproceed.2011.03.035
[19]  Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40: 221–226. doi: 10.1053/ajkd.2002.34487
[20]  Lamhamedi-Cherradi SE, Zheng S, Tisch RM, Chen YH (2003) Critical roles of tumor necrosis factor-related apoptosis-inducing ligand in type 1 diabetes. Diabetes 52: 2274–2278. doi: 10.2337/diabetes.52.9.2274
[21]  Charlesworth JA, Kriketos AD, Jones JE, Erlich JH, Campbell LV, et al. (2005) Insulin resistance and postprandial triglyceride levels in primary renal disease. Metabolism 54: 821–828. doi: 10.1016/j.metabol.2005.01.028
[22]  Okura T, Jotoku M, Irita J, Enomoto D, Nagao T, et al. (2010) Association between cystatin C and inflammation in patients with essential hypertension. Clin Exp Nephrol 14: 584–588. doi: 10.1007/s10157-010-0334-8
[23]  Qing X, Furong W, Yunxia L, Jian Z, Xuping W, et al. (2012) Cystatin C and asymptomatic coronary artery disease in patients with metabolic syndrome and normal glomerular filtration rate. Cardiovasc Diabetol 11: 108. doi: 10.1186/1475-2840-11-108
[24]  Angelidis C, Deftereos S, Giannopoulos G, Anatoliotakis N, Bouras G, et al. (2013) Cystatin C: an emerging biomarker in cardiovascular disease. Curr Top Med Chem 13: 164–179. doi: 10.2174/1568026611313020006
[25]  Grubb A, Bjork J, Nyman U, Pollak J, Bengzon J, et al. (2011) Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation. Scand J Clin Lab Invest 71: 145–149. doi: 10.3109/00365513.2010.546879
[26]  Lim AK, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediators of inflammation 2012: 146154. doi: 10.1155/2012/146154
[27]  Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, et al. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271: 12687–12690. doi: 10.1074/jbc.271.22.12687
[28]  Wiley SR (1995) Schooley K, Smolak PJ, Din WS, Huang CP, et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 2: 673–682. doi: 10.1016/1074-7613(95)90057-8
[29]  Spierings DC, de Vries EG, Vellenga E, van den Heuvel FA, Koornstra JJ, et al. (2004) Tissue distribution of the death ligand TRAIL and its receptors. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society 52: 821–831. doi: 10.1369/jhc.3a6112.2004
[30]  Chen B, Zhang Y, Liu G, Guan GJ, Hou XH, et al. (2008) [Effects of valsartan, mycophenolate mofetil and their combined application on TRAIL and nuclear factor-kappaB expression in the kidneys of diabetic rats]. Zhonghua Yi Xue Za Zhi 88: 540–545.
[31]  Lv W, Zhang Y, Guan G, Li P, Wang J, et al. (2013) Mycophenolate mofetil and valsartan inhibit podocyte apoptosis in streptozotocin-induced diabetic rats. Pharmacology 92: 227–234. doi: 10.1159/000354600
[32]  Krieg A, Krieg T, Wenzel M, Schmitt M, Ramp U, et al. (2003) TRAIL-beta and TRAIL-gamma: two novel splice variants of the human TNF-related apoptosis-inducing ligand (TRAIL) without apoptotic potential. Br J Cancer 88: 918–927.
[33]  Wang P, Lu Y, Li C, Li N, Yu P, et al. (2011) Novel transcript variants of TRAIL show different activities in activation of NF-kappaB and apoptosis. Life Sci 89: 839–846. doi: 10.1016/j.lfs.2011.09.003
[34]  Candido R (2014) The osteoprotegerin/tumor necrosis factor related apoptosis-inducing ligand axis in the kidney. Curr Opin Nephrol Hypertens 23: 69–74. doi: 10.1097/01.mnh.0000437611.42417.7a
[35]  Di Bartolo BA, Cartland SP, Harith HH, Bobryshev YV, Schoppet M, et al. (2013) TRAIL-Deficiency Accelerates Vascular Calcification in Atherosclerosis via Modulation of RANKL. PLoS One 8: e74211. doi: 10.1371/journal.pone.0074211
[36]  Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, et al. (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168: 1356–1361. doi: 10.4049/jimmunol.168.3.1356
[37]  Sedger LM, Glaccum MB, Schuh JC, Kanaly ST, Williamson E, et al. (2002) Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 32: 2246–2254. doi: 10.1002/1521-4141(200208)32:8<2246::aid-immu2246>3.0.co;2-6
[38]  Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, et al. (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195: 161–169. doi: 10.1084/jem.20011171
[39]  Diao Z, Shi J, Zhu J, Yuan H, Ru Q, et al. (2013) TRAIL suppresses tumor growth in mice by inducing tumor-infiltrating CD4(+)CD25 (+) Treg apoptosis. Cancer immunology, immunotherapy: CII 62: 653–663. doi: 10.1007/s00262-012-1370-x
[40]  Dorothee G, Vergnon I, Menez J, Echchakir H, Grunenwald D, et al. (2002) Tumor-infiltrating CD4+ T lymphocytes express APO2 ligand (APO2L)/TRAIL upon specific stimulation with autologous lung carcinoma cells: role of IFN-alpha on APO2L/TRAIL expression and -mediated cytotoxicity. J Immunol 169: 809–817. doi: 10.4049/jimmunol.169.2.809
[41]  Fanger NA, Maliszewski CR (1999) Schooley K, Griffith TS (1999) Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 190: 1155–1164. doi: 10.1084/jem.190.8.1155
[42]  Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, et al. (1999) Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 189: 1343–1354. doi: 10.1084/jem.189.8.1343
[43]  Chan J, Prado-Lourenco L, Khachigian LM, Bennett MR, Di Bartolo BA, et al. (2010) TRAIL promotes VSMC proliferation and neointima formation in a FGF-2-, Sp1 phosphorylation-, and NFkappaB-dependent manner. Circ Res 106: 1061–1071. doi: 10.1161/circresaha.109.206029

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133