全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Cloning and Characterization of a Wheat Homologue of Apurinic/Apyrimidinic Endonuclease Ape1L

DOI: 10.1371/journal.pone.0092963

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. Methodology/Principal Findings We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3′-repair phosphodiesterase, 3′-phosphatase and 3′→5′ exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg2+ and Ca2+ (5–10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn2+, Co2+ and Fe2+ cations (0.1–1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6–7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20°C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3′-blocking sugar-phosphate and 3′-phosphate groups with good efficiency (kcat/KM = 630 and 485 μM?1·min?1, respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. Conclusions/Significance Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors.

References

[1]  Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11: 607–620. doi: 10.1038/nrm2950
[2]  Kavli B, Otterlei M, Slupphaug G, Krokan HE (2007) Uracil in DNA—general mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst) 6: 505–516. doi: 10.1016/j.dnarep.2006.10.014
[3]  Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, et al. (2006) DNA repair and mutagenesis: ASM Press.
[4]  Cadet J, Douki T, Gasparutto D, Ravanat JL (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531: 5–23. doi: 10.1615/jenvpathtoxoncol.v23.i1.30
[5]  Krokan HE, Bjoras M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5: a012583. doi: 10.1101/cshperspect.a012583
[6]  Ischenko AA, Saparbaev MK (2002) Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature 415: 183–187. doi: 10.1038/415183a
[7]  Hitomi K, Iwai S, Tainer JA (2007) The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 6: 410–428. doi: 10.1016/j.dnarep.2006.10.004
[8]  Gros L, Ishchenko AA, Ide H, Elder RH, Saparbaev MK (2004) The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res 32: 73–81. doi: 10.1093/nar/gkh165
[9]  Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809: 360–368. doi: 10.1016/j.bbagrm.2011.04.006
[10]  He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21: 442–465. doi: 10.1038/cr.2011.23
[11]  Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43: 143–166. doi: 10.1146/annurev-genet-102108-134205
[12]  Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macias MI, Ariza RR, et al. (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci U S A 103: 6853–6858. doi: 10.1073/pnas.0601109103
[13]  Babiychuk E, Kushnir S, Van Montagu M, Inze D (1994) The Arabidopsis thaliana apurinic endonuclease Arp reduces human transcription factors Fos and Jun. Proc Natl Acad Sci U S A 91: 3299–3303. doi: 10.1073/pnas.91.8.3299
[14]  Cordoba-Canero D, Morales-Ruiz T, Roldan-Arjona T, Ariza RR (2009) Single-nucleotide and long-patch base excision repair of DNA damage in plants. Plant J 60: 716–728. doi: 10.1111/j.1365-313x.2009.03994.x
[15]  Cordoba-Canero D, Roldan-Arjona T, Ariza RR (2011) Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. Plant J 68: 693–702. doi: 10.1111/j.1365-313x.2011.04720.x
[16]  Martinez-Macias MI, Qian W, Miki D, Pontes O, Liu Y, et al. (2012) A DNA 3′ phosphatase functions in active DNA demethylation in Arabidopsis. Mol Cell 45: 357–370. doi: 10.1016/j.molcel.2011.11.034
[17]  Murphy TM, Belmonte M, Shu S, Britt AB, Hatteroth J (2009) Requirement for abasic endonuclease gene homologues in Arabidopsis seed development. PLoS One 4: e4297. doi: 10.1371/journal.pone.0004297
[18]  Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, et al. (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491: 705–710. doi: 10.1038/nature11650
[19]  Blaisdell P, Warner H (1983) Partial purification and characterization of a uracil-DNA glycosylase from wheat germ. J Biol Chem 258: 1603–1609.
[20]  Bissenbaev AK, Ishchenko AA, Taipakova SM, Saparbaev MK (2011) Presence of base excision repair enzymes in the wheat aleurone and their activation in cells undergoing programmed cell death. Plant Physiol Biochem 49: 1155–1164. doi: 10.1016/j.plaphy.2011.07.017
[21]  Couve S, Mace-Aime G, Rosselli F, Saparbaev MK (2009) The human oxidative DNA glycosylase NEIL1 excises psoralen-induced interstrand DNA cross-links in a three-stranded DNA structure. J Biol Chem 284: 11963–11970. doi: 10.1074/jbc.m900746200
[22]  Ishchenko AA, Sanz G, Privezentzev CV, Maksimenko AV, Saparbaev M (2003) Characterisation of new substrate specificities of Escherichia coli and Saccharomyces cerevisiae AP endonucleases. Nucleic Acids Res 31: 6344–6353. doi: 10.1093/nar/gkg812
[23]  Ishchenko AA, Yang X, Ramotar D, Saparbaev M (2005) The 3′->5′ Exonuclease of Apn1 Provides an Alternative Pathway To Repair 7,8-Dihydro-8-Oxodeoxyguanosine in Saccharomyces cerevisiae. Mol Cell Biol 25: 6380–6390. doi: 10.1128/mcb.25.15.6380-6390.2005
[24]  Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37: D387–392. doi: 10.1093/nar/gkn750
[25]  Manvilla BA, Pozharski E, Toth EA, Drohat AC (2013) Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg(2+) cofactor. Acta Crystallogr D Biol Crystallogr 69: 2555–2562. doi: 10.1107/s0907444913027042
[26]  Mol CD, Izumi T, Mitra S, Tainer JA (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature 403: 451–456. doi: 10.1038/35006693
[27]  Tsutakawa SE, Shin DS, Mol CD, Izumi T, Arvai AS, et al. (2013) Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes. J Biol Chem 288: 8445–8455. doi: 10.1074/jbc.m112.422774
[28]  Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. doi: 10.1038/msb.2011.75
[29]  Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343–350. doi: 10.1093/bioinformatics/btq662
[30]  Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277: 1141–1152. doi: 10.1006/jmbi.1998.1665
[31]  Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, et al. (1999) The GROMOS Biomolecular Simulation Program Package. The Journal of Physical Chemistry A 103: 3596–3607. doi: 10.1021/jp984217f
[32]  Rogers SG, Weiss B (1980) Exonuclease III of Escherichia coli K-12, an AP endonuclease. Methods Enzymol 65: 201–211. doi: 10.1016/s0076-6879(80)65028-9
[33]  Kane CM, Linn S (1981) Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J Biol Chem 256: 3405–3414.
[34]  Gorman MA, Morera S, Rothwell DG, de La Fortelle E, Mol CD, et al. (1997) The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. Embo J 16: 6548–6558. doi: 10.1093/emboj/16.21.6548
[35]  Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson DM 3rd, et al. (2001) Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism. J Mol Biol 307: 1023–1034. doi: 10.1006/jmbi.2001.4529
[36]  Georgiadis MM, Luo M, Gaur RK, Delaplane S, Li X, et al. (2008) Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease. Mutat Res 643: 54–63. doi: 10.1016/j.mrfmmm.2008.04.008
[37]  Hsin K, Sheng Y, Harding MM, Taylor P, Walkinshaw MD (2008) MESPEUS: a database of the geometry of metal sites in proteins. Journal of Applied Crystallography 41: 963–968. doi: 10.1107/s002188980802476x
[38]  Andreini C, Cavallaro G, Lorenzini S, Rosato A (2013) MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res 41: D312–319. doi: 10.1093/nar/gks1063
[39]  Robson CN, Milne AM, Pappin DJ, Hickson ID (1991) Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes. Nucleic Acids Res 19: 1087–1092. doi: 10.1093/nar/19.5.1087
[40]  Wyatt MD, Allan JM, Lau AY, Ellenberger TE, Samson LD (1999) 3-methyladenine DNA glycosylases: structure, function, and biological importance. Bioessays 21: 668–676. doi: 10.1002/(sici)1521-1878(199908)21:8<668::aid-bies6>3.0.co;2-d
[41]  Demple B, Johnson A, Fung D (1986) Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci U S A 83: 7731–7735. doi: 10.1073/pnas.83.20.7731
[42]  Cunningham RP, Saporito SM, Spitzer SG, Weiss B (1986) Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol 168: 1120–1127.
[43]  Schmiedel R, Kuettner EB, Keim A, Strater N, Greiner-Stoffele T (2009) Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus. DNA Repair (Amst) 8: 219–231. doi: 10.1016/j.dnarep.2008.10.009
[44]  Delano WL (2002) The PyMOL Molecular Graphics System.
[45]  Gelin A, Redrejo-Rodriguez M, Laval J, Fedorova OS, Saparbaev M, et al. (2010) Genetic and biochemical characterization of human AP endonuclease 1 mutants deficient in nucleotide incision repair activity. PLoS One 5: e12241. doi: 10.1371/journal.pone.0012241

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133