Involuntary weight loss in patients with cancer is the hallmark of cancer cachexia. The etiology of cachexia is multifactorial involving loss of skeletal muscle and adipose tissue associated with high systemic levels of acute phase proteins and inflammatory cytokines. While muscle wasting overtly impacts on cancer patient quality of life, loss of lipid depots represents a sustained energy imbalance. In this study fat depletion was examined in Colon-26 model of cancer cachexia, which is a widely used rodent model of this syndrome. We investigated diurnal expression of circadian rhythm regulators as well as key mediators of energy metabolism and cytokine signaling. Mice bearing the C26 tumour exhibited reduced adipose mass, elevated adipose tissue lipolysis and a 5-fold increase in plasma levels of free fatty acids. These changes were associated with activated IL-6 signaling in WAT through a 3-fold increase in phosphorylated STAT3 and high SOCS3 gene expression levels. In addition perturbations in circadian regulation of lipid metabolism were also observed. Lipid catabolism did not appear to be influenced by the classical PKA pathway activating the lipase HSL. ATGL protein levels were elevated 2-fold in cachectic mice while 4-fold increase phosphorylated ACC and a 2-fold decrease in phosphorylated 4EBP1 was observed indicating that lipid metabolism is modulated by the ATGL & AMPK/mTOR pathways. This study provides evidence for activation of cytokine signaling and concomitant alterations in circadian rhythm and regulators of lipid metabolism in WAT of cachectic animals.
References
[1]
Bruera E (1997) ABC of palliative care. Anorexia, cachexia, and nutrition. Br Med J 315: 1219–1222. doi: 10.1136/bmj.315.7117.1219
[2]
Palesty JA, Dudrick SJ (2003) What we have learned about cachexia in gastrointestinal cancer. Dig Dis 21: 198–213. doi: 10.1159/000073337
[3]
Richards CH, Roxburgh CS, MacMillan MT, Isswiasi S, Robertson EG, et al. (2012) The relationships between body composition and the systemic inflammatory response in patients with primary operable colorectal cancer. PLoS One 7: e41883. doi: 10.1371/journal.pone.0041883
[4]
Argiles JM, Almendro V, Busquets S, Lopez-Soriano FJ (2004) The pharmacological treatment of cachexia. Curr Drug Targets 5: 265–277. doi: 10.2174/1389450043490505
[5]
Dewys WD, Begg C, Lavin PT, Bennet PR, Bertino JR (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am J Med 69: 491–497. doi: 10.1016/s0149-2918(05)80001-3
Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16: 153–166. doi: 10.1016/j.cmet.2012.06.011
[8]
Tsoli M, Moore M, Burg D, Painter A, Taylor R, et al. (2012) Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 72: 4372–4382. doi: 10.1158/0008-5472.can-11-3536
[9]
Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, et al. (2010) Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 102: 1541–1548.
[10]
Carson JA, Baltgalvis KA (2010) Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev 38: 168–176. doi: 10.1097/jes.0b013e3181f44f11
[11]
Petersen EW, Carey AL, Sacchetti M, Steinberg GR, Macaulay SL, et al. (2005) Acute IL-6 treatment increases fatty acid turnover in elederly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab 288: E155–E162. doi: 10.1152/ajpendo.00257.2004
[12]
Strassman G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. Journal of Clinical Investigation 89: 1681–1684. doi: 10.1172/jci115767
[13]
Strassman G, Fong M, Freter CE, Windsor S, D’Alessandro F (1993) Suramin interferes with interleukin-6 receptor binding in vitro and inhibits colon-26-mediated experimental cancer cachexia in vivo. J Clin Invest 92: 2152–2159. doi: 10.1172/jci116816
[14]
Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, et al. (2012) JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 303: E410–E421. doi: 10.1152/ajpendo.00039.2012
[15]
Johnston JD, Frost G, Otway DT (2009) Adipose tissue, adipocytes and the circadian timing system. Obes Rev 10 52–60.
[16]
Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 23: 1–8. doi: 10.1016/j.tem.2011.10.005
[17]
Loboda A, Kraft WK, Fine B, Joseph J, Nebozhyn M, et al. (2009) Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med Genomics 2: 7. doi: 10.1186/1755-8794-2-7
[18]
Yang X, Downes M, Yu RT, Bookout AL, He W, et al. (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126: 801–810. doi: 10.1016/j.cell.2006.06.050
[19]
Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Nat Acad Sci USA 108: 1657–1662. doi: 10.1073/pnas.1018375108
[20]
Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5: 253–261. doi: 10.1038/nrendo.2009.23
[21]
Gómez-Abellán P, Hernández-Morante JJ, Luján JA, Madrid JA, Garaulet M (2008) Clock genes are implicated in the human metabolic syndrome. Int J Obes (Lond) 32: 121–128. doi: 10.1038/sj.ijo.0803689
[22]
Froy O (2011) The circadian clock and metabolism. Clin Sci 120: 65–72. doi: 10.1042/cs20100327
[23]
Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med 9: S23–S28. doi: 10.1016/s1389-9457(08)70013-3
[24]
Das SK, Eder S, Schauer S, Diwoky C, Temmel H, et al. (2011) Adipose Triglyceride Lipase Contributes to Cancer-Associated Cachexia. Science 333: 233–238. doi: 10.1126/science.1198973
[25]
Rydén M, Agustsson T, Laurencikiene J, Britton T, Sj?lin E, et al. (2008) Lipolysis-Not inflammation, cell death, or lipogenesis-Is involved in adipose tissue loss in cancer cachexia. Cancer 113: 1695–1704. doi: 10.1002/cncr.23802
[26]
Haugen F, Labori KJ, Noreng HJ, Buanes T, Iversen PO, et al. (2011) Altered expression of genes in adipose tissues associated with reduced fat mass in patients with pancreatic cancer. Arch Physiol Biochem 1172: 78–87. doi: 10.3109/13813455.2011.560609
[27]
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, et al. (2012) Fat Signals–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15: 279–291. doi: 10.1016/j.cmet.2011.12.018
[28]
Fouladiun M, Korner U, Bosaeus I, Daneryd P, Hyltander A, et al. (2005) Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care–correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103: 2189–2198. doi: 10.1002/cncr.21013
[29]
Rydén M, Arner P (2007) Fat loss in cachexia–is there a role for adipocyte lipolysis? Clin Nutr. 1–6.
[30]
Murphy KT, Chee A, Trieu J, Naim T, Lynch GS (2012) Importance of functional and metabolic impairements in the characterisation of the C-26 murine model of cancer cachexia. Dis Model Mech 5: 533–545.
[31]
Zhou X, Wang JL, Lu J, Song Y, Kwak KS, et al.. (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 531–543.
[32]
Kahn BB, Alquier T, Carling D, Hardie DG (2007) AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1: 15–25. doi: 10.1016/j.cmet.2004.12.003
[33]
Barnea M, Madar Z, Froy O (2010) High-fat Diet Followed by Fasting Disrupts Circadian Expression of Adiponectin Signaling Pathway in Muscle and Adipose Tissue. Obesity 18: 230–238. doi: 10.1038/oby.2009.276
[34]
Bing C, Russell S, Becket E, Pope M, Tisdale MJ, et al. (2006) Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer 95: 1028–1037.
[35]
Cao D-X, Wu G-H, Yang Z-A, Zhang B, Jiang Y, et al. (2010) Role of beta1-adrenoceptor in increased lipolysis in cancer cachexia. Cancer Sci 101: 1639–1645. doi: 10.1111/j.1349-7006.2010.01582.x
[36]
Lee S-E, Glass DJ (2011) Treating cancer cachexia to treat cancer. Skelet Muscle 1: 2–6. doi: 10.1186/2044-5040-1-2
[37]
Blum D, Omlin A, Baracos VE, Solheim TS, Tan BHL, et al. (2011) Cancer cachexia: A systematic literature review of items and domains associated with involuntary weight loss in cancer. Cr Rev Oncol-Hem 80: 114–144. doi: 10.1016/j.critrevonc.2010.10.004
[38]
Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, et al. (2011) STAT3 activation in skeletal muscle links muscle wasting and tehacute phase response in cancer cachexia. PLoS One 6: e22538. doi: 10.1371/journal.pone.0022538
[39]
Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson J-O (2002) Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun 293: 560–565. doi: 10.1016/s0006-291x(02)00230-9
[40]
Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, et al. (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55: 962–970. doi: 10.2337/diabetes.55.04.06.db05-0873
[41]
Batista ML, Neves RX, Peres SB, Yamashita AS, Shida CS, et al.. (2012) Heterogeneous time-dependent response of adipose tissue during the development of cancer cachexia. J Endocrinol. 363–373.
[42]
Arner P (2011) Medicine. Lipases in cachexia. Science 333: 163–164. doi: 10.1126/science.1209418
[43]
Fearon KC (2011) Cancer cachexia and fat-muscle physiology. N Engl J Med 365: 565–567. doi: 10.1056/nejmcibr1106880
[44]
Bertile F, Raclot T (2011) ATGL and HSL are not coordinately regulated in response to fuel partitioning in fasted rats. J Nutr Biochem 22: 372–379. doi: 10.1016/j.jnutbio.2010.03.005
[45]
Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574: 73–83. doi: 10.1113/jphysiol.2006.113217
[46]
Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, et al. (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 13: 739–748. doi: 10.1016/j.cmet.2011.05.002
[47]
Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1: 15–25. doi: 10.1016/j.cmet.2004.12.003
[48]
Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, et al. (2004) AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun 320: 449–454. doi: 10.1016/j.bbrc.2004.05.188
[49]
Soliman G, Acosta-Jaquez HA, Fingar DC (2010) mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45: 1089–1100. doi: 10.1007/s11745-010-3488-y
[50]
Franck N, Gummesson A, Jernas M, Glad C, Svensson P-A, et al. (2011) Identification of adipocyte gens regulated by caloric intake. J Clin Endocr Metab 96: E413–E418. doi: 10.1210/jc.2009-2534