[1] | Kluckow M, Evans N, Osborn D (2004) Low Systemic Blood Flow and Brain Injury in the Preterm Infant. NeoReviews 5: e98–e108. doi: 10.1542/neo.5-3-e98
|
[2] | Seri I (2001) Circulatory support of the sick preterm infant. Semin Neonatol 6: 85–95. doi: 10.1053/siny.2000.0034
|
[3] | Kluckow M, Evans N (2000) Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 82: F188–194. doi: 10.1136/fn.82.3.f188
|
[4] | Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I, et al. (2007) Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 120: 372–380. doi: 10.1542/peds.2006-3398
|
[5] | Osborn D, Evans N, Kluckow M, Osborn D, Evans N, et al. (2002) Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. J Pediatr 140: 183–191. doi: 10.1067/mpd.2002.120834
|
[6] | Whitsett JA, Darovec-Beckerman C (1981) Developmental aspects of beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase in rat myocardium. Pediatr Res 15: 1363–1369. doi: 10.1203/00006450-198110000-00013
|
[7] | Baker SP, Potter LT (1980) Cardiac beta-adrenoceptors during normal growth of male and female rats. Br J Pharmacol 68: 65–70. doi: 10.1111/j.1476-5381.1980.tb10699.x
|
[8] | Hatjis CG, McLaughlin MK (1982) Identification and ontogenesis of beta-adrenergic receptors in fetal and neonatal rabbit myocardium. J Dev Physiol 4: 327–338.
|
[9] | Chen FM, Yamamura HI, Roeske WR (1979) Ontogeny of mammalian myocardial beta-adrenergic receptors. Eur J Pharmacol 58: 255–264. doi: 10.1016/0014-2999(79)90474-6
|
[10] | Rockson SG, Homcy CJ, Quinn P, Manders WT, Haber E, et al. (1981) Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs. J Clin Invest 67: 319–327. doi: 10.1172/jci110038
|
[11] | Noguchi A, Whitsett JA, Dickman L (1981) Ontogeny of myocardial alpha-1-adrenergic receptor in the rat. Dev Pharmacol Ther 3: 179–188.
|
[12] | Cox DJ, Groves AM (2012) Inotropes in preterm infants - evidence for and against. Acta Paediatr 101: 17–23. doi: 10.1111/j.1651-2227.2011.02545.x
|
[13] | Slotkin TA, Kavlock RJ, Cowdery T, Orband L, Bartolome M, et al. (1986) Effects of Neonatal Methylmercury Exposure on Adrenergic-Receptor Binding-Sites in Peripheral-Tissues of the Developing Rat. Toxicology 41: 95–106. doi: 10.1016/0300-483x(86)90107-1
|
[14] | De Matteo R, Blasch N, Stokes V, Davis P, Harding R (2010) Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth. Reprod Sci 17: 724–733. doi: 10.1177/1933719110369182
|
[15] | Stevenson DK, Verter J, Fanaroff AA, Oh W, Ehrenkranz RA, et al. (2000) Sex differences in outcomes of very low birthweight infants: the newborn male disadvantage. Arch Dis Child Fetal Neonatal Ed 83: F182–185. doi: 10.1136/fn.83.3.f182
|
[16] | Elsmen E, Hansen Pupp I, Hellstrom-Westas L (2004) Preterm male infants need more initial respiratory and circulatory support than female infants. Acta Paediatr 93: 529–533. doi: 10.1080/08035250410024998
|
[17] | Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, et al. (2001) Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89: 343–350. doi: 10.1161/hh1601.095912
|
[18] | Grupp IL, Lorenz JN, Walsh RA, Boivin GP, Rindt H (1998) Overexpression of alpha1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 275: H1338–1350.
|
[19] | Woodcock EA (2007) Roles of alpha1A- and alpha1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 34: 884–888. doi: 10.1111/j.1440-1681.2007.04707.x
|
[20] | Porter AC, Svensson SP, Stamer WD, Bahl JJ, Richman JG, et al. (2003) Alpha-2 adrenergic receptors stimulate actin organization in developing fetal rat cardiac myocytes. Life Sci 72: 1455–1466. doi: 10.1016/s0024-3205(02)02381-0
|
[21] | Gilsbach R, Schneider J, Lother A, Schickinger S, Leemhuis J, et al. (2010) Sympathetic alpha(2)-adrenoceptors prevent cardiac hypertrophy and fibrosis in mice at baseline but not after chronic pressure overload. Cardiovasc Res 86: 432–442. doi: 10.1093/cvr/cvq014
|
[22] | Osborn DA, Evans N, Kluckow M, Osborn DA, Evans N, et al. (2003) Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 112: 33–39. doi: 10.1542/peds.112.1.33
|
[23] | Giraud GD, Louey S, Jonker S, Schultz J, Thornburg KL (2006) Cortisol stimulates cell cycle activity in the cardiomyocyte of the sheep fetus. Endocrinology 147: 3643–3649. doi: 10.1210/en.2006-0061
|
[24] | Lumbers ER, Boyce AC, Joulianos G, Kumarasamy V, Barner E, et al. (2005) Effects of cortisol on cardiac myocytes and on expression of cardiac genes in fetal sheep. Am J Physiol Regul Integr Comp Physiol 288: R567–574.
|
[25] | Myslivecek J, Ricny J, Kolar F, Tucek S (2003) The effects of hydrocortisone on rat heart muscarinic and adrenergic alpha 1, beta 1 and beta 2 receptors, propranolol-resistant binding sites and on some subsequent steps in intracellular signalling. Naunyn Schmiedebergs Arch Pharmacol 368: 366–376. doi: 10.1007/s00210-003-0825-1
|
[26] | Kawano F, Tanihata J, Sato S, Nomura S, Shiraishi A, et al. (2009) Effects of dexamethasone on the expression of beta(1)-, beta (2)- and beta (3)-adrenoceptor mRNAs in skeletal and left ventricle muscles in rats. J Physiol Sci 59: 383–390. doi: 10.1007/s12576-009-0046-6
|
[27] | Adigun AA, Wrench N, Seidler FJ, Slotkin TA (2010) Neonatal dexamethasone treatment leads to alterations in cell signaling cascades controlling hepatic and cardiac function in adulthood. Neurotoxicol Teratol 32: 193–199. doi: 10.1016/j.ntt.2009.10.002
|
[28] | Nakada MT, Stadel JM, Poksay KS, Crooke ST (1987) Glucocorticoid regulation of beta-adrenergic receptors in 3T3-L1 preadipocytes. Mol Pharmacol 31: 377–384. doi: 10.1016/0014-2999(87)90732-1
|
[29] | Carron J, Morel C, Blum JW, Hammon HM (2005) Effects of dexamethasone and colostrum feeding on mRNA levels and binding capacities of beta-adrenergic receptors in the liver of neonatal calves. Domest Anim Endocrinol 28: 257–271. doi: 10.1016/j.domaniend.2004.10.001
|
[30] | Moise AA, Wearden ME, Kozinetz CA, Gest AL, Welty SE, et al. (1995) Antenatal steroids are associated with less need for blood pressure support in extremely premature infants. Pediatrics 95: 845–850.
|
[31] | Stark MJ, Wright IM, Clifton VL (2009) Sex-specific alterations in placental 11beta-hydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone. Am J Physiol Regul Integr Comp Physiol 297: R510–514. doi: 10.1152/ajpregu.00175.2009
|
[32] | Mohl MC, Iismaa SE, Xiao XH, Friedrich O, Wagner S, et al. (2011) Regulation of murine cardiac contractility by activation of alpha(1A)-adrenergic receptor-operated Ca(2+) entry. Cardiovasc Res 91: 310–319. doi: 10.1093/cvr/cvr081
|
[33] | Schmid G, Pfitzer P (1985) Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 48: 59–67. doi: 10.1007/bf02890115
|
[34] | Kim MY, Eiby YE, Lumbers ER, Wright L, L, Gibson KJ, et al.. (2014) Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet PLOS ONE In press.
|
[35] | Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27: 273–281. doi: 10.1016/s0022-2828(08)80026-0
|
[36] | Eiby YA, Wright LL, Kalanjati VP, Miller SM, Bjorkman ST, et al.. (2013) A pig model of the preterm neonate: Anthropometric and physiological characteristics. PLOS ONE July 9, 2013, DOI: 10.1371/journal.pone.0068763.
|
[37] | Eiby YA, Lumbers ER, Headrick JP, Lingwood BE (2012) Left ventricular output and aortic blood flow in response to changes in preload and afterload in the preterm piglet heart. Am J Physiol Regul Integr Comp Physiol 303: R769–777. doi: 10.1152/ajpregu.00010.2012
|
[38] | Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nature Protocols 3: 1101–1108. doi: 10.1038/nprot.2008.73
|
[39] | McMullen JR, Gibson KJ, Lumbers ER, Burrell JH (2002) 125I[Sar(1)Ile(8)] angiotensin II has a different affinity for AT(1) and AT(2) receptor subtypes in ovine tissues. Regul Pept 105: 83–92. doi: 10.1016/s0167-0115(02)00002-2
|
[40] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
|
[41] | Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27: 273–281. doi: 10.1016/s0022-2828(08)80026-0
|
[42] | Zhang J, Penny DJ, Kim NS, Yu VY, Smolich JJ (1999) Mechanisms of blood pressure increase induced by dopamine in hypotensive preterm neonates. Arch Dis Child Fetal Neonatal Ed 81: F99–F104. doi: 10.1136/fn.81.2.f99
|
[43] | Fowden AL, Apatu RS, Silver M (1995) The glucogenic capacity of the fetal pig: developmental regulation by cortisol. Exp Physiol 80: 457–467.
|
[44] | van der Voort CR, Kavelaars A, van de Pol M, al e (2000) Noradrenaline induces phosphorylation of ERK-2 in human peripheral blood mononuclear cells after induction of alpha(1)-adrenergic receptors. J Neuroimmunol 108: 82–91. doi: 10.1016/s0165-5728(00)00253-8
|
[45] | Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, et al. (1997) Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 272: 21253–21259. doi: 10.1074/jbc.272.34.21253
|
[46] | Metz LD, Seidler FJ, McCook EC, Slotkin TA (1996) Cardiac alpha-adrenergic receptor expression is regulated by thyroid hormone during a critical developmental period. J Mol Cell Cardiol 28: 1033–1044. doi: 10.1006/jmcc.1996.0096
|
[47] | Smolich JJ (1995) Ultrastructural and functional features of the developing mammalian heart: a brief overview. Reprod Fertil Dev 7: 451–461. doi: 10.1071/rd9950451
|
[48] | Jensen BC, Swigart PM, Simpson PC (2009) Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch Pharmacol 379: 409–412. doi: 10.1007/s00210-008-0368-6
|
[49] | Pradidarcheep W, Stallen J, Labruyere WT, Dabhoiwala NF, Michel MC, et al. (2009) Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 379: 397–402. doi: 10.1007/s00210-009-0393-0
|