全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Novel Artificial MicroRNA Expressing AAV Vector for Phospholamban Silencing in Cardiomyocytes Improves Ca2+ Uptake into the Sarcoplasmic Reticulum

DOI: 10.1371/journal.pone.0092188

Full-Text   Cite this paper   Add to My Lib

Abstract:

In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.

References

[1]  Hulot JS, Senyei G, Hajjar RJ (2012) Sarcoplasmic reticulum and calcium cycling targeting by gene therapy. Gene Ther 19: 596–599. doi: 10.1038/gt.2012.34
[2]  Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, et al. (2010) Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 121: 822–830. doi: 10.1161/circulationaha.109.890954
[3]  Hadri L, Hajjar RJ (2011) Calcium cycling proteins and their association with heart failure. Clin Pharmacol Ther 90: 620–624.
[4]  Kawase Y, Ladage D, Hajjar RJ (2011) Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 57: 1169–1180. doi: 10.1016/j.jacc.2010.11.023
[5]  del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, et al. (2001) Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)?ATPase in a rat model of heart failure. Circulation 104: 1424–1429. doi: 10.1161/hc3601.095574
[6]  Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, et al. (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 51: 1112–1119. doi: 10.1016/j.jacc.2007.12.014
[7]  Iwanaga Y, Hoshijima M, Gu Y, Iwatate M, Dieterle T, et al. (2004) Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 113: 727–736. doi: 10.1172/jci200418716
[8]  Dieterle T, Meyer M, Gu Y, Belke DD, Swanson E, et al. (2005) Gene transfer of a phospholamban-targeted antibody improves calcium handling and cardiac function in heart failure. Cardiovasc Res 67: 678–688. doi: 10.1016/j.cardiores.2005.04.029
[9]  Zhang HS, Liu D, Huang Y, Schmidt S, Hickey R, et al. (2012) A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol Ther 20: 1508–1515. doi: 10.1038/mt.2012.80
[10]  Watanabe A, Arai M, Yamazaki M, Koitabashi N, Wuytack F, et al. (2004) Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J Mol Cell Cardiol 37: 691–698. doi: 10.1016/j.yjmcc.2004.06.009
[11]  Fechner H, Suckau L, Kurreck J, Sipo I, Wang X, et al. (2007) Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. Gene Ther 14: 211–218. doi: 10.1038/sj.gt.3302872
[12]  Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, et al. (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119: 1241–1252. doi: 10.1161/circulationaha.108.783852
[13]  Andino LM, Takeda M, Kasahara H, Jakymiw A, Byrne BJ, et al. (2008) AAV-mediated knockdown of phospholamban leads to improved contractility and calcium handling in cardiomyocytes. J Gene Med 10: 132–142. doi: 10.1002/jgm.1131
[14]  Bish LT, Sleeper MM, Reynolds C, Gazzara J, Withnall E, et al. (2011) Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines. Hum Gene Ther 22: 969–977. doi: 10.1089/hum.2011.035
[15]  Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15: 188–200. doi: 10.1101/gad.862301
[16]  Lee YS, Nakahara K, Pham JW, Kim K, He Z, et al. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69–81. doi: 10.1016/s0092-8674(04)00261-2
[17]  Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J (2011) Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 16: 8475–8503. doi: 10.3390/molecules16108475
[18]  Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl 48: 1378–1398. doi: 10.1002/anie.200802092
[19]  Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553. doi: 10.1126/science.1068999
[20]  Fechner H, Sipo I, Westermann D, Pinkert S, Wang X, et al. (2008) Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med (Berl) 86: 987–997. doi: 10.1007/s00109-008-0363-x
[21]  Huang Z, Dong L, Chen J, Gao F, Zhang Z, et al. (2012) Low-molecular weight chitosan/vascular endothelial growth factor short hairpin RNA for the treatment of hepatocellular carcinoma. Life Sci 91: 1207–1215. doi: 10.1016/j.lfs.2012.09.015
[22]  Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34: 263–264. doi: 10.1038/ng1173
[23]  Hutson TH, Foster E, Dawes JM, Hindges R, Yanez-Munoz RJ, et al. (2012) Lentiviral vectors encoding short hairpin RNAs efficiently transduce and knockdown LINGO-1 but induce an interferon response and cytotoxicity in central nervous system neurones. J Gene Med 14: 299–315. doi: 10.1002/jgm.2626
[24]  Kenworthy R, Lambert D, Yang F, Wang N, Chen Z, et al. (2009) Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res 37: 6587–6599. doi: 10.1093/nar/gkp714
[25]  Singh S, Narang AS, Mahato RI (2011) Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res 28: 2996–3015. doi: 10.1007/s11095-011-0608-1
[26]  Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, et al. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: 537–541. doi: 10.1038/nature04791
[27]  Borel F, van Logtenstein R, Koornneef A, Maczuga P, Ritsema T, et al. (2011) In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs. J RNAi Gene Silencing 7: 434–442.
[28]  McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, et al. (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105: 5868–5873. doi: 10.1073/pnas.0801775105
[29]  Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17: 169–175. doi: 10.1038/mt.2008.231
[30]  Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333. doi: 10.1016/s1097-2765(02)00541-5
[31]  Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, et al. (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37: 1289–1295. doi: 10.1038/ng1651
[32]  Xiao S, Wang Q, Gao J, Wang L, He Z, et al. (2011) Inhibition of highly pathogenic PRRSV replication in MARC-145 cells by artificial microRNAs. Virol J 8: 491. doi: 10.1186/1743-422x-8-491
[33]  Chung KH, Hart CC, Al-Bassam S, Avery A, Taylor J, et al. (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 34: e53. doi: 10.1093/nar/gkl143
[34]  Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235. doi: 10.1038/nature03049
[35]  Shan Z, Lin Q, Deng C, Li X, Huang W, et al. (2009) An efficient method to enhance gene silencing by using precursor microRNA designed small hairpin RNAs. Mol Biol Rep 36: 1483–1489. doi: 10.1007/s11033-008-9339-8
[36]  Boden D, Pusch O, Silbermann R, Lee F, Tucker L, et al. (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 32: 1154–1158. doi: 10.1093/nar/gkh278
[37]  Maczuga P, Lubelski J, van Logtenstein R, Borel F, Blits B, et al. (2012) Embedding siRNA sequences targeting Apolipoprotein B100 in shRNA and miRNA scaffolds results in differential processing and in vivo efficacy. Mol Ther.
[38]  Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14: 1834–1844. doi: 10.1261/rna.1062908
[39]  Vetter R, Kott M, Schulze W, Rupp H (1998) Influence of different culture conditions on sarcoplasmic reticular calcium transport in isolated neonatal rat cardiomyocytes. Mol Cell Biochem 188: 177–185. doi: 10.1007/978-1-4615-5763-0_19
[40]  Muller OJ, Schinkel S, Kleinschmidt JA, Katus HA, Bekeredjian R (2008) Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther 15: 1558–1565. doi: 10.1038/gt.2008.111
[41]  Pinkert S, Westermann D, Wang X, Klingel K, Dorner A, et al. (2009) Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor. Circulation 120: 2358–2366. doi: 10.1161/circulationaha.108.845339
[42]  Fechner H, Pinkert S, Wang X, Sipo I, Suckau L, et al. (2007) Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor. Gene Ther 14: 960–971. doi: 10.1038/sj.gt.3302948
[43]  Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, et al. (2011) microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18: 199–209. doi: 10.1038/gt.2010.141
[44]  Sipo I, Fechner H, Pinkert S, Suckau L, Wang X, et al. (2007) Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction. Gene Ther 14: 1319–1329. doi: 10.1038/sj.gt.3302987
[45]  Varkonyi-Gasic E, Hellens RP (2010) qRT-PCR of Small RNAs. Methods Mol Biol 631: 109–122. doi: 10.1007/978-1-60761-646-7_10
[46]  Cernohorsky J, Kolar F, Pelouch V, Korecky B, Vetter R (1998) Thyroid control of sarcolemmal Na+/Ca2+ exchanger and SR Ca2+-ATPase in developing rat heart. Am J Physiol 275: H264–273.
[47]  Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74: 5383–5392. doi: 10.1021/ac025747h
[48]  Hammer E, Goritzka M, Ameling S, Darm K, Steil L, et al. (2011) Characterization of the human myocardial proteome in inflammatory dilated cardiomyopathy by label-free quantitative shotgun proteomics of heart biopsies. J Proteome Res 10: 2161–2171. doi: 10.1021/pr1008042
[49]  Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, et al. (2006) Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 70: 70–78. doi: 10.1016/j.cardiores.2005.12.017
[50]  Giering JC, Grimm D, Storm TA, Kay MA (2008) Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 16: 1630–1636. doi: 10.1038/mt.2008.144
[51]  Maczuga P, Koornneef A, Borel F, Petry H, van Deventer S, et al. (2012) Optimization and comparison of knockdown efficacy between polymerase II expressed shRNA and artificial miRNA targeting luciferase and Apolipoprotein B100. BMC Biotechnol 12: 42. doi: 10.1186/1472-6750-12-42
[52]  Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, et al. (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111: 869–876. doi: 10.1172/jci200317892
[53]  Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, et al. (2006) A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci U S A 103: 13759–13764. doi: 10.1073/pnas.0606179103
[54]  Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37: 918–925. doi: 10.1042/bst0370918
[55]  Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3: 251–255. doi: 10.1007/s12265-010-9169-7
[56]  Thum T, Gross C, Fiedler J, Fischer T, Kissler S, et al. (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456: 980–984. doi: 10.1038/nature07511
[57]  Sayed D, Rane S, Lypowy J, He M, Chen IY, et al. (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19: 3272–3282. doi: 10.1091/mbc.e08-02-0159
[58]  MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4: 566–577. doi: 10.1038/nrm1151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133