Background Genome wide association studies (GWAS) have identified several SNPs associated with colorectal cancer (CRC) susceptibility. Vitamin D is also inversely associated with CRC risk. Methods We examined main and joint effects of previously GWAS identified genetic markers of CRC and plasma 25-hydroxyvitamin D (25(OH)D) on CRC risk in three prospective cohorts: the Nurses' Health Study (NHS), the Health Professionals Follow-up Study (HPFS), and the Physicians' Health Study (PHS). We included 1895 CRC cases and 2806 controls with genomic DNA. We calculated odds ratios and 95% confidence intervals for CRC associated with additive genetic risk scores (GRSs) comprised of all CRC SNPs and subsets of these SNPs based on proximity to regions of increased vitamin D receptor binding to vitamin D response elements (VDREs), based on published ChiP-seq data. Among a subset of subjects with additional prediagnostic 25(OH)D we tested multiplicative interactions between plasma 25(OH)D and GRS's. We used fixed effects models to meta-analyze the three cohorts. Results The per allele multivariate OR was 1.12 (95% CI, 1.06–1.19) for GRS-proximalVDRE; and 1.10 (95% CI, 1.06–1.14) for GRS-nonproxVDRE. The lowest quartile of plasma 25(OH)D compared with the highest, had a multivariate OR of 0.63 (95% CI, 0.48–0.82) for CRC. We did not observe any significant interactions between any GRSs and plasma 25(OH)D. Conclusions We did not observe evidence for the modification of genetic susceptibility for CRC according to vitamin D status, or evidence that the effect of common CRC risk alleles differed according to their proximity to putative VDR binding sites.
References
[1]
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, et al. (2013) Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 144: 799–807 e724.
[2]
Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, et al. (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631–637. doi: 10.1038/ng.133
[3]
Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, et al. (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39: 1315–1317. doi: 10.1038/ng.2007.18
[4]
Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, et al. (2008) Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40: 1426–1435. doi: 10.1038/ng.262
[5]
Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, et al. (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39: 984–988. doi: 10.1038/ng2085
[6]
Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, et al. (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39: 989–994. doi: 10.1038/ng2089
[7]
Haiman CA, Dossus L, Setiawan VW, Stram DO, Dunning AM, et al. (2007) Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res 67: 1893–1897. doi: 10.1158/0008-5472.can-06-4123
[8]
Hutter CM, Slattery ML, Duggan DJ, Muehling J, Curtin K, et al. (2010) Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer 10: 670. doi: 10.1186/1471-2407-10-670
[9]
Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, et al. (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40: 623–630. doi: 10.1038/ng.111
[10]
Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, et al. (2011) Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet 7: e1002105. doi: 10.1371/journal.pgen.1002105
[11]
Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, et al. (2008) Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40: 26–28. doi: 10.1038/ng.2007.41
[12]
Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, et al. (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet 42: 973–977. doi: 10.1038/ng.670
[13]
Jia WH, Zhang B, Matsuo K, Shin A, Xiang YB, et al. (2012) Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet 45: 191–196. doi: 10.1038/ng.2505
[14]
Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, et al. (2012) Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet 44: 770–776.
[15]
Kocarnik JD, Hutter CM, Slattery ML, Berndt SI, Hsu L, et al. (2010) Characterization of 9p24 risk locus and colorectal adenoma and cancer: gene-environment interaction and meta-analysis. Cancer Epidemiol Biomarkers Prev.
[16]
Peters U, Hutter CM, Hsu L, Schumacher FR, Conti DV, et al. (2011) Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet.
[17]
Garland C, Shekelle RB, Barrett-Connor E, Criqui MH, Rossof AH, et al. (1985) Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet 1: 307–309. doi: 10.1016/s0140-6736(85)91082-7
[18]
Kearney J, Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, et al. (1996) Calcium, vitamin D, and dairy foods and the occurrence of colon cancer in men. Am J Epidemiol 143: 907–917. doi: 10.1093/oxfordjournals.aje.a008834
[19]
Bostick RM, Potter JD, Sellers TA, McKenzie DR, Kushi LH, et al. (1993) Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women's Health Study. Am J Epidemiol 137: 1302–1317.
[20]
Martinez ME, Giovannucci EL, Colditz GA, Stampfer MJ, Hunter DJ, et al. (1996) Calcium, vitamin D, and the occurrence of colorectal cancer among women. J Natl Cancer Inst 88: 1375–1382. doi: 10.1093/jnci/88.19.1375
[21]
Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, et al. (2007) Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 32: 210–216. doi: 10.1016/j.amepre.2006.11.004
[22]
Woolcott CG, Wilkens LR, Nomura AM, Horst RL, Goodman MT, et al. (2010) Plasma 25-hydroxyvitamin D levels and the risk of colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 19: 130–134. doi: 10.1158/1055-9965.epi-09-0475
[23]
Wu K, Feskanich D, Fuchs CS, Willett WC, Hollis BW, et al. (2007) A nested case control study of plasma 25-hydroxyvitamin D concentrations and risk of colorectal cancer. J Natl Cancer Inst 99: 1120–1129. doi: 10.1093/jnci/djm038
[24]
Ma Y, Zhang P, Wang F, Yang J, Liu Z, et al. (2011) Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol 29: 3775–3782. doi: 10.1200/jco.2011.35.7566
[25]
Deeb KK, Trump DL, Johnson CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7: 684–700. doi: 10.1038/nrc2196
[26]
Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, et al. (2010) A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 20: 1352–1360. doi: 10.1101/gr.107920.110
[27]
Colditz GA, Martin P, Stampfer MJ, Willett WC, Sampson L, et al. (1986) Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women. Am J Epidemiol 123: 894–900.
[28]
Belanger CF, Hennekens CH, Rosner B, Speizer FE (1978) The nurses' health study. Am J Nurs 78: 1039–1040. doi: 10.1097/00000446-197806000-00037
[29]
Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, et al. (1991) Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 338: 464–468. doi: 10.1016/0140-6736(91)90542-w
[30]
Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, et al. (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351: 2599–2610. doi: 10.1056/nejmoa040967
[31]
Steering Committee of the Physicians' Health Study Research Group (1989) Final report on the aspirin component of the ongoing Physicians' Health Study. Steering Committee of the Physicians' Health Study Research Group. N Engl J Med 321: 129–135. doi: 10.1056/nejm198907203210301
[32]
Lee JE, Li H, Chan AT, Hollis BW, Lee IM, et al. (2011) Circulating levels of vitamin D and colon and rectal cancer: the Physicians' Health Study and a meta-analysis of prospective studies. Cancer Prev Res (Phila) 4: 735–743. doi: 10.1158/1940-6207.capr-10-0289
[33]
Feskanich D, Ma J, Fuchs CS, Kirkner GJ, Hankinson SE, et al. (2004) Plasma vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 13: 1502–1508.
[34]
Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34: 816–834. doi: 10.1002/gepi.20533
[35]
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, et al. (2012) Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-wide Meta-analysis. Gastroenterology.
[36]
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188. doi: 10.1016/0197-2456(86)90046-2
[37]
Heikkinen S, Vaisanen S, Pehkonen P, Seuter S, Benes V, et al. (2011) Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 39: 9181–9193. doi: 10.1093/nar/gkr654
[38]
Carlberg C, Seuter S, Heikkinen S (2012) The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Anticancer Res 32: 271–282.