全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

AspC-Mediated Aspartate Metabolism Coordinates the Escherichia coli Cell Cycle

DOI: 10.1371/journal.pone.0092229

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences. Methodology/Principle Findings We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (p)ppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant. Conclusion/Significances The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.

References

[1]  Cooper S, Helmstetter C (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31: 519–540. doi: 10.1016/0022-2836(68)90425-7
[2]  Wang JD, Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7: 822–827. doi: 10.1038/nrmicro2202
[3]  Skarstad K, Steen HB, Boye E (1983) Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol 154: 656–662.
[4]  Skarstad K, Steen HB, Boye E (1985) Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J Bacteriol 163: 661–668.
[5]  Katayama T, Kubota T, Kurokawa K, Crooke E, Sekimizu K (1998) The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94: 61–71. doi: 10.1016/s0092-8674(00)81222-2
[6]  Ryan VT, Grimwade JE, Nievera CJ, Leonard AC (2002) IHF and HU stimulate assembly of pre-replication complexes at Escherichia coli oriC by two different mechanisms. Mol Microbiol 46: 113–124. doi: 10.1046/j.1365-2958.2002.03129.x
[7]  Bramhill D, Kornberg A (1988) A model for initiation at origins of DNA replication. Cell 54: 915–918. doi: 10.1016/0092-8674(88)90102-x
[8]  Baker TA, Funnell B, Kornberg A (1987) Helicase action of DnaB protein during replication from the Escherichia coli chromosomal origin in vitro. J Biol Chem 262: 6877–6885.
[9]  Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161–164. doi: 10.1038/354161a0
[10]  Maciag M, Nowicki D, Janniere L, Szalewska-Palasz A, Wegrzyn G (2011) Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb Cell Fact 10: 19. doi: 10.1186/1475-2859-10-19
[11]  Teplyakov A, Obmolova G, Sarikaya E, Pullalarevu S, Krajewski W, et al. (2004) Crystal structure of the YgfZ protein from Escherichia coli suggests a folate-dependent regulatory role in one-carbon metabolism. J Bacteriol 186: 7134–7140. doi: 10.1128/jb.186.21.7134-7140.2004
[12]  Ote T, Hashimoto M, Ikeuchi Y, Su’etsugu M, Suzuki T, et al. (2006) Involvement of the Escherichia coli folate-binding protein YgfZ in RNA modification and regulation of chromosomal replication initiation. Mol Microbiol 59: 265–275. doi: 10.1111/j.1365-2958.2005.04932.x
[13]  Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, et al. (2007) Genetic evidence for a link between glycolysis and DNA replication. PloS one 2: e447. doi: 10.1371/journal.pone.0000447
[14]  Yao Z, Davis RM, Kishony R, Kahne D, Ruiz N (2012) Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 109: e2561–2568. doi: 10.1073/pnas.1209742109
[15]  Wold S, Skarstad K, Steen HB, Stokke T, Boye E (1994) The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J 13: 2097–2102.
[16]  Chien AC, Hill NS, Levin PA (2012) Cell size control in bacteria. Curr Biol 22: R340–349. doi: 10.1016/j.cub.2012.02.032
[17]  Hill NS, Kadoya R, Chattoraj DK, Levin PA (2012) Cell size and the initiation of DNA replication in bacteria. PLoS genetics 8: e1002549. doi: 10.1371/journal.pgen.1002549
[18]  Donachie W (1968) Relationship between cell size and time of initiation of DNA replication.Nature. 219: 1077–1079. doi: 10.1038/2191077a0
[19]  Gon S, Camara JE, Klungs?yr HK, Crooke E, Skarstad K, et al. (2006) A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. EMBO J 25: 1137–1147. doi: 10.1038/sj.emboj.7600990
[20]  Miller RV, Ripp S, Replicon J, Ogunseitan O, Kokjohn TA (1992) Virus-mediated gene transfer in freshwater environments. Gene transfers and environment. Springer. 51–62.
[21]  Morigen, Molina F, Skarstad K (2005) Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 187: 3913–3920. doi: 10.1128/jb.187.12.3913-3920.2005
[22]  Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645. doi: 10.1073/pnas.120163297
[23]  Skarstad K, Boye E, Steen HB (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 5: 1711.
[24]  Boye E, L?bner-Olesen A (1991) Bacterial growth control studied by flow cytometry. Res Microbiol 142: 131–135. doi: 10.1016/0923-2508(91)90020-b
[25]  Morigen, L?bner-Olesen A, Skarstad K (2003) Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 50: 349–362. doi: 10.1046/j.1365-2958.2003.03695.x
[26]  Morigen H, Boye E, Skarstad K, L?bner-Olesen A (2001) Regulation of chromosomal replication by DnaA protein availability in Escherichia coli: effects of the datA region. Biochim Biophys Acta 1521: 73–80. doi: 10.1016/s0167-4781(01)00292-5
[27]  Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H (1993) Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry 32: 12229–12239. doi: 10.1021/bi00096a036
[28]  Plamann MD, Stauffer LT, Urbanowski ML, Stauffer GV (1983) Complete nucleotide sequence of the E. coli glyA gene. Nucleic Acids Res 11: 2065–2075. doi: 10.1093/nar/11.7.2065
[29]  Whalen WA, Berg CM (1982) Analysis of an avtA:: Mu d1 (Ap lac) mutant: metabolic role of transaminase C. J Bacteriol. 150: 739–746.
[30]  Wasserman SA, Walsh CT, Botstein D (1983) Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153: 1439–1450.
[31]  Glansdorff N (1965) Topography of cotransducible arginine mutations in Escherichia coli K-12. Genetics 51: 167–179.
[32]  Braun RE, O’Day K, Wright A (1985) Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40: 159–169. doi: 10.1016/0092-8674(85)90319-8
[33]  L?bner-Olesen A, Skarstad K, Hansen FG, von Meyenburg K, Boye E (1989) The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57: 881–889. doi: 10.1016/0092-8674(89)90802-7
[34]  Hiraga S, Saito T (1975) Initiation of DNA replication in Escherichia coli. II. Effect of rifampicin on the resumption of replication of F episome and chromosome upon the returning of dna mutants from a non-permissive to a permissive temperature. Mol Gen Genet 137: 239–248. doi: 10.1007/bf00333019
[35]  Wechsler JA, Gross JD (1971) Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet 113: 273–284. doi: 10.1007/bf00339547
[36]  Zyskind JW, Smith DW (1977) NOVEL Escherichia coli dnaB mutant: direct involvement of the dnaB252 gene product in the synthesis of an origin-ribonucleic acid species during initiaion of a round of deoxyribonucleic acid replication. J Bacteriol 129: 1476–1486.
[37]  Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, et al. (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266: 5980–5990.
[38]  Jin DJ, Cagliero C, Zhou YN (2012) Growth rate regulation in Escherichia coli. FEMS Microbiol Rev 36: 269–287. doi: 10.1111/j.1574-6976.2011.00279.x
[39]  Potrykus K, Murphy H, Philippe N, Cashel M (2011) ppGpp is the major source of growth rate control in E. coli. Environ Microbiol 13: 563–575. doi: 10.1111/j.1462-2920.2010.02357.x
[40]  Maci?g-Dorszyńska M, Szalewska-Pa?asz A, W?grzyn G (2013) Different effects of ppGpp on Escherichia coli DNA replication in vivo and in vitro. FEBS Open Bio. 3: 161–164. doi: 10.1016/j.fob.2013.03.001
[41]  Zyskind JW, Smith DW (1992) DNA replication, the bacterial cell cycle, and cell growth. Cell 69: 5–8. doi: 10.1016/0092-8674(92)90112-p
[42]  Boye E, Nordstr?m K (2003) Coupling the cell cycle to cell growth. EMBO Rep 4: 757–760. doi: 10.1038/sj.embor.embor895
[43]  Cronan J, Littel K, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149: 916–922.
[44]  Jin L, Stec B, Lipscomb WN, Kantrowitz ER (1999) Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 ?. Proteins. 37: 729–742. doi: 10.1002/(sici)1097-0134(19991201)37:4<729::aid-prot21>3.3.co;2-6
[45]  Richaud C, Higgins W, Mengin-Lecreulx D, Stragier P (1987) Molecular cloning, characterization, and chromosomal localization of dapF, the Escherichia coli gene for diaminopimelate epimerase. J Bacteriol 169: 1454–1459.
[46]  Viola RE (2001) The central enzymes of the aspartate family of amino acid biosynthesis. Acc Chem Res 34: 339–349. doi: 10.1021/ar000057q
[47]  Zhang Y, Morar M, Ealick SE (2008) Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 65: 3699–3724. doi: 10.1007/s00018-008-8295-8
[48]  Tedeschi G, Nonnis S, Strumbo B, Cruciani G, Carosati E, et al. (2010) On the catalytic role of the active site residue E121 of E. coli l-aspartate oxidase. Biochimie 92: 1335–1342. doi: 10.1016/j.biochi.2010.06.015
[49]  White D, Drummond JT, Fuqua C (2007) The physiology and biochemistry of prokaryotes. Oxford University Press New York. 632 p.
[50]  Goh E-B, Bledsoe PJ, Chen L-L, Gyaneshwar P, Stewart V, et al. (2005) Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187: 4890–4899. doi: 10.1128/jb.187.14.4890-4899.2005
[51]  Chiaramello AE, Zyskind JW (1989) Expression of Escherichia coli dnaA and mioC genes as a function of growth rate. J Bacteriol 171: 4272–4280.
[52]  Hanawalt PC, Maal?e O, Cummings DJ, Schaechter M (1961) The normal DNA replication cycle. II. J Mol Biol 3: 156–165. doi: 10.1016/s0022-2836(61)80042-9
[53]  Schaechter M, Maal?e O, Kjeldgaard N (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19: 592–606. doi: 10.1099/00221287-19-3-592
[54]  Sargent MG (1975) Control of cell length in Bacillus subtilis. J Bacteriol 123: 7–19.
[55]  Weart RB, Lee AH, Chien A-C, Haeusser DP, Hill NS, et al. (2007) A metabolic sensor governing cell size in bacteria. Cell 130: 335–347. doi: 10.1016/j.cell.2007.05.043
[56]  Hill NS, Buske PJ, Shi Y, Levin PA (2013) A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS genetics 9: e1003663. doi: 10.1371/journal.pgen.1003663
[57]  Lu M, Kleckner N (1994) Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol 176: 5847–5851.
[58]  Fantes P, Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107: 377–386. doi: 10.1016/0014-4827(77)90359-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133