[1] | Cooper S, Helmstetter C (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31: 519–540. doi: 10.1016/0022-2836(68)90425-7
|
[2] | Wang JD, Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7: 822–827. doi: 10.1038/nrmicro2202
|
[3] | Skarstad K, Steen HB, Boye E (1983) Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol 154: 656–662.
|
[4] | Skarstad K, Steen HB, Boye E (1985) Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J Bacteriol 163: 661–668.
|
[5] | Katayama T, Kubota T, Kurokawa K, Crooke E, Sekimizu K (1998) The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94: 61–71. doi: 10.1016/s0092-8674(00)81222-2
|
[6] | Ryan VT, Grimwade JE, Nievera CJ, Leonard AC (2002) IHF and HU stimulate assembly of pre-replication complexes at Escherichia coli oriC by two different mechanisms. Mol Microbiol 46: 113–124. doi: 10.1046/j.1365-2958.2002.03129.x
|
[7] | Bramhill D, Kornberg A (1988) A model for initiation at origins of DNA replication. Cell 54: 915–918. doi: 10.1016/0092-8674(88)90102-x
|
[8] | Baker TA, Funnell B, Kornberg A (1987) Helicase action of DnaB protein during replication from the Escherichia coli chromosomal origin in vitro. J Biol Chem 262: 6877–6885.
|
[9] | Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161–164. doi: 10.1038/354161a0
|
[10] | Maciag M, Nowicki D, Janniere L, Szalewska-Palasz A, Wegrzyn G (2011) Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb Cell Fact 10: 19. doi: 10.1186/1475-2859-10-19
|
[11] | Teplyakov A, Obmolova G, Sarikaya E, Pullalarevu S, Krajewski W, et al. (2004) Crystal structure of the YgfZ protein from Escherichia coli suggests a folate-dependent regulatory role in one-carbon metabolism. J Bacteriol 186: 7134–7140. doi: 10.1128/jb.186.21.7134-7140.2004
|
[12] | Ote T, Hashimoto M, Ikeuchi Y, Su’etsugu M, Suzuki T, et al. (2006) Involvement of the Escherichia coli folate-binding protein YgfZ in RNA modification and regulation of chromosomal replication initiation. Mol Microbiol 59: 265–275. doi: 10.1111/j.1365-2958.2005.04932.x
|
[13] | Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, et al. (2007) Genetic evidence for a link between glycolysis and DNA replication. PloS one 2: e447. doi: 10.1371/journal.pone.0000447
|
[14] | Yao Z, Davis RM, Kishony R, Kahne D, Ruiz N (2012) Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 109: e2561–2568. doi: 10.1073/pnas.1209742109
|
[15] | Wold S, Skarstad K, Steen HB, Stokke T, Boye E (1994) The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J 13: 2097–2102.
|
[16] | Chien AC, Hill NS, Levin PA (2012) Cell size control in bacteria. Curr Biol 22: R340–349. doi: 10.1016/j.cub.2012.02.032
|
[17] | Hill NS, Kadoya R, Chattoraj DK, Levin PA (2012) Cell size and the initiation of DNA replication in bacteria. PLoS genetics 8: e1002549. doi: 10.1371/journal.pgen.1002549
|
[18] | Donachie W (1968) Relationship between cell size and time of initiation of DNA replication.Nature. 219: 1077–1079. doi: 10.1038/2191077a0
|
[19] | Gon S, Camara JE, Klungs?yr HK, Crooke E, Skarstad K, et al. (2006) A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. EMBO J 25: 1137–1147. doi: 10.1038/sj.emboj.7600990
|
[20] | Miller RV, Ripp S, Replicon J, Ogunseitan O, Kokjohn TA (1992) Virus-mediated gene transfer in freshwater environments. Gene transfers and environment. Springer. 51–62.
|
[21] | Morigen, Molina F, Skarstad K (2005) Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 187: 3913–3920. doi: 10.1128/jb.187.12.3913-3920.2005
|
[22] | Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645. doi: 10.1073/pnas.120163297
|
[23] | Skarstad K, Boye E, Steen HB (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 5: 1711.
|
[24] | Boye E, L?bner-Olesen A (1991) Bacterial growth control studied by flow cytometry. Res Microbiol 142: 131–135. doi: 10.1016/0923-2508(91)90020-b
|
[25] | Morigen, L?bner-Olesen A, Skarstad K (2003) Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 50: 349–362. doi: 10.1046/j.1365-2958.2003.03695.x
|
[26] | Morigen H, Boye E, Skarstad K, L?bner-Olesen A (2001) Regulation of chromosomal replication by DnaA protein availability in Escherichia coli: effects of the datA region. Biochim Biophys Acta 1521: 73–80. doi: 10.1016/s0167-4781(01)00292-5
|
[27] | Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H (1993) Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry 32: 12229–12239. doi: 10.1021/bi00096a036
|
[28] | Plamann MD, Stauffer LT, Urbanowski ML, Stauffer GV (1983) Complete nucleotide sequence of the E. coli glyA gene. Nucleic Acids Res 11: 2065–2075. doi: 10.1093/nar/11.7.2065
|
[29] | Whalen WA, Berg CM (1982) Analysis of an avtA:: Mu d1 (Ap lac) mutant: metabolic role of transaminase C. J Bacteriol. 150: 739–746.
|
[30] | Wasserman SA, Walsh CT, Botstein D (1983) Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153: 1439–1450.
|
[31] | Glansdorff N (1965) Topography of cotransducible arginine mutations in Escherichia coli K-12. Genetics 51: 167–179.
|
[32] | Braun RE, O’Day K, Wright A (1985) Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40: 159–169. doi: 10.1016/0092-8674(85)90319-8
|
[33] | L?bner-Olesen A, Skarstad K, Hansen FG, von Meyenburg K, Boye E (1989) The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57: 881–889. doi: 10.1016/0092-8674(89)90802-7
|
[34] | Hiraga S, Saito T (1975) Initiation of DNA replication in Escherichia coli. II. Effect of rifampicin on the resumption of replication of F episome and chromosome upon the returning of dna mutants from a non-permissive to a permissive temperature. Mol Gen Genet 137: 239–248. doi: 10.1007/bf00333019
|
[35] | Wechsler JA, Gross JD (1971) Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet 113: 273–284. doi: 10.1007/bf00339547
|
[36] | Zyskind JW, Smith DW (1977) NOVEL Escherichia coli dnaB mutant: direct involvement of the dnaB252 gene product in the synthesis of an origin-ribonucleic acid species during initiaion of a round of deoxyribonucleic acid replication. J Bacteriol 129: 1476–1486.
|
[37] | Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, et al. (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266: 5980–5990.
|
[38] | Jin DJ, Cagliero C, Zhou YN (2012) Growth rate regulation in Escherichia coli. FEMS Microbiol Rev 36: 269–287. doi: 10.1111/j.1574-6976.2011.00279.x
|
[39] | Potrykus K, Murphy H, Philippe N, Cashel M (2011) ppGpp is the major source of growth rate control in E. coli. Environ Microbiol 13: 563–575. doi: 10.1111/j.1462-2920.2010.02357.x
|
[40] | Maci?g-Dorszyńska M, Szalewska-Pa?asz A, W?grzyn G (2013) Different effects of ppGpp on Escherichia coli DNA replication in vivo and in vitro. FEBS Open Bio. 3: 161–164. doi: 10.1016/j.fob.2013.03.001
|
[41] | Zyskind JW, Smith DW (1992) DNA replication, the bacterial cell cycle, and cell growth. Cell 69: 5–8. doi: 10.1016/0092-8674(92)90112-p
|
[42] | Boye E, Nordstr?m K (2003) Coupling the cell cycle to cell growth. EMBO Rep 4: 757–760. doi: 10.1038/sj.embor.embor895
|
[43] | Cronan J, Littel K, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149: 916–922.
|
[44] | Jin L, Stec B, Lipscomb WN, Kantrowitz ER (1999) Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 ?. Proteins. 37: 729–742. doi: 10.1002/(sici)1097-0134(19991201)37:4<729::aid-prot21>3.3.co;2-6
|
[45] | Richaud C, Higgins W, Mengin-Lecreulx D, Stragier P (1987) Molecular cloning, characterization, and chromosomal localization of dapF, the Escherichia coli gene for diaminopimelate epimerase. J Bacteriol 169: 1454–1459.
|
[46] | Viola RE (2001) The central enzymes of the aspartate family of amino acid biosynthesis. Acc Chem Res 34: 339–349. doi: 10.1021/ar000057q
|
[47] | Zhang Y, Morar M, Ealick SE (2008) Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 65: 3699–3724. doi: 10.1007/s00018-008-8295-8
|
[48] | Tedeschi G, Nonnis S, Strumbo B, Cruciani G, Carosati E, et al. (2010) On the catalytic role of the active site residue E121 of E. coli l-aspartate oxidase. Biochimie 92: 1335–1342. doi: 10.1016/j.biochi.2010.06.015
|
[49] | White D, Drummond JT, Fuqua C (2007) The physiology and biochemistry of prokaryotes. Oxford University Press New York. 632 p.
|
[50] | Goh E-B, Bledsoe PJ, Chen L-L, Gyaneshwar P, Stewart V, et al. (2005) Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187: 4890–4899. doi: 10.1128/jb.187.14.4890-4899.2005
|
[51] | Chiaramello AE, Zyskind JW (1989) Expression of Escherichia coli dnaA and mioC genes as a function of growth rate. J Bacteriol 171: 4272–4280.
|
[52] | Hanawalt PC, Maal?e O, Cummings DJ, Schaechter M (1961) The normal DNA replication cycle. II. J Mol Biol 3: 156–165. doi: 10.1016/s0022-2836(61)80042-9
|
[53] | Schaechter M, Maal?e O, Kjeldgaard N (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19: 592–606. doi: 10.1099/00221287-19-3-592
|
[54] | Sargent MG (1975) Control of cell length in Bacillus subtilis. J Bacteriol 123: 7–19.
|
[55] | Weart RB, Lee AH, Chien A-C, Haeusser DP, Hill NS, et al. (2007) A metabolic sensor governing cell size in bacteria. Cell 130: 335–347. doi: 10.1016/j.cell.2007.05.043
|
[56] | Hill NS, Buske PJ, Shi Y, Levin PA (2013) A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS genetics 9: e1003663. doi: 10.1371/journal.pgen.1003663
|
[57] | Lu M, Kleckner N (1994) Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol 176: 5847–5851.
|
[58] | Fantes P, Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107: 377–386. doi: 10.1016/0014-4827(77)90359-7
|