全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Hydrodynamic Trails Produced by Daphnia: Size and Energetics

DOI: 10.1371/journal.pone.0092383

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study focuses on quantifying hydrodynamic trails produced by freely swimming zooplankton. We combined volumetric tracking of swimming trajectories with planar observations of the flow field induced by Daphnia of different size and swimming in different patterns. Spatial extension of the planar flow field along the trajectories was used to interrogate the dimensions (length and volume) and energetics (dissipation rate of kinetic energy and total dissipated power) of the trails. Our findings demonstrate that neither swimming pattern nor size of the organisms affect the trail width or the dissipation rate. However, we found that the trail volume increases with increasing organism size and swimming velocity, more precisely the trail volume is proportional to the third power of Reynolds number. This increase furthermore results in significantly enhanced total dissipated power at higher Reynolds number. The biggest trail volume observed corresponds to about 500 times the body volume of the largest daphnids. Trail-averaged viscous dissipation rate of the swimming daphnids vary in the range of to and the observed magnitudes of total dissipated power between and , respectively. Among other zooplankton species, daphnids display the highest total dissipated power in their trails. These findings are discussed in the context of fluid mixing and transport by organisms swimming at intermediate Reynolds numbers.

References

[1]  Ki?rboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev Camb Philos Soc 86: 311–339. doi: 10.1111/j.1469-185x.2010.00148.x
[2]  Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31: 121–133. doi: 10.1093/plankt/fbn109
[3]  Lombard F, Koski M, Ki?rboe T (2013) Copepods use chemical trails to find sinking marine snow aggregates. Limnol Oceanogr 58: 185–192. doi: 10.4319/lo.2013.58.1.0185
[4]  Pijanowska J, Kowalczewski A (1997) Predators can introduce swarming behaviour and locomotory responses in Daphnia. Freshwater Biol 37: 649–656. doi: 10.1046/j.1365-2427.1997.00192.x
[5]  Visser AW (2001) Hydromechanical signals in the plankton. Marine Ecology-Progress Series 222: 1–24. doi: 10.3354/meps222001
[6]  Ki?rboe T, Jiang HS, Colin SP (2010) Danger of zooplankton feeding: the uid signal generated by ambush-feeding copepods. Proc R Soc B-Biol Sci 277: 3229–3237. doi: 10.1098/rspb.2010.0629
[7]  Dabiri JO (2010) Role of vertical migration in biogenic ocean mixing. Geophysical research letters 37: L11602. doi: 10.1029/2010gl043556
[8]  Dewar W, Bingham R, Iverson R, Nowacek D, St Laurent L, et al. (2006) Does the marine biosphere mix the ocean? Journal of Marine Research 64: 541–561. doi: 10.1357/002224006778715720
[9]  Huntley M, Zhou M (2004) Influence of animals on turbulence in the sea. Marine Ecology Progress Series 273: 65–79. doi: 10.3354/meps273065
[10]  Kunze E (2011) Fluid mixing by swimming organisms in the low-reynolds-number limit. Journal of Marine Research 69: 591–601. doi: 10.1357/002224011799849435
[11]  Visser A (2007) Biomixing of the oceans? Science 316: 838–839. doi: 10.1126/science.1141272
[12]  Jiang H, Osborn TR, Meneveau C (2002) The flow field around a freely swimming copepod in steady motion. Part I: Theoretical analysis. J Plankton Res 24: 167–189. doi: 10.1093/plankt/24.3.167
[13]  Jiang H, Meneveau C, Osborn TR (2002) The ow field around a freely swimming copepod in steady motion. Part II: Numerical simulation. J Plankton Res 24: 191–213. doi: 10.1093/plankt/24.3.191
[14]  Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72.
[15]  Noss C, Lorke A (2014) Direct observation of biomixing by vertically migrating zooplankton. Limnol Oceanogr (in press).
[16]  Jiang HS, Osborn TR (2004) Hydrodynamics of copepods: A review. Surv Geophys 25: 339–370. doi: 10.1007/s10712-003-1282-6
[17]  Videler JJ, Stamhuis EJ, Muller UK, van Duren LA (2002) The scaling and structure of aquatic animal wakes. Integrative and Comparative Biology 42: 988–996. doi: 10.1093/icb/42.5.988
[18]  Walker JA (2002) Functional morphology and virtual models: Physical constraints on the design of oscillating wings, fins, legs, and feet at intermediate reynolds numbers. Integrative and Comparative Biology 42: 232–242. doi: 10.1093/icb/42.2.232
[19]  Arana DCP, Moore PA, Feinberg BA, DeWall J, Strickler JR (2007) Studying Daphnia feeding behavior as a black box: a novel electrochemical approach. Hydrobiologia 594: 153–163. doi: 10.1007/s10750-007-9080-7
[20]  Gries T, J?hnk K, Fields D, Strickler JR (1999) Size and structure of “footprints” produced by Daphnia: impact of animal size and density gradients. Journal of Plankton Research 21: 509–523. doi: 10.1093/plankt/21.3.509
[21]  Kohlhage K (1994) The economy of paddle-swimming: The role of added waters and viscosity in the locomotion of Daphnia magna. Zool Beitr 35: 47–54.
[22]  Morris MJ, Gust G, Torres JJ (1985) Propulsion efficiency and cost of transport for copepods: A hydromechanical model of crustacean swimming. Mar Biol 86: 283–295. doi: 10.1007/bf00397515
[23]  Morris MJ, Kohlhage K, Gust G (1990) Mechanics and energetics of swimming the small copepod Acanthocylops robustus (Cylopoida). Mar Biol 107: 83–91. doi: 10.1007/bf01313245
[24]  Noss C, Lorke A (2012) Zooplankton induced currents and uxes in stratified waters. Water Qual Res J Can 47: 276–285. doi: 10.2166/wqrjc.2012.135
[25]  OECD (2004). Guideline for testing of chemicals 202. Organisation for Economic Cooperation and Development.
[26]  Ranta E, Bengtsson J, McManus J (1993) Growth, size and shape of Daphnia longispina, D. magna and D. pulex. Ann Zool Fennici 30: 299–311.
[27]  Ringelberg J (1999) The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol Rev 74: 397–423. doi: 10.1017/s0006323199005381
[28]  Ringelberg J, Flik BJG, Aanen D, Van Gool E (1997) Amplitude of vertical migration (DVM) is a function of fish biomass, a hypothesis. Archiv für Hydrobiologie/Beihefte Ergebnisse Limnologie 49: 71–78.
[29]  Van Gool E, Ringelberg J (1997) The effect of accelerations in light increase on the phototactic downward swimming of Daphnia and the relevance to diel vertical migration. Journal of Plankton Research 19: 2041–2050. doi: 10.1093/plankt/19.12.2041
[30]  Noss C, Lorke A, Neuhaus E (2013) Three-dimensional tracking of multiple aquatic organisms with a two camera system. Limnol Oceanogr Methods 11: 139–150. doi: 10.4319/lom.2013.11.139
[31]  Seuront L, Brewer MC, Strickler JR (2004) Quantifying zooplankton swimming behavior: the question of scale. Handbook of scaling methods in aquatic ecology: measurement, analysis, simulation: 333–359.
[32]  Strutton PG (2007) Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation. CRC Press, 1st edition, 338–339 pp.
[33]  Stamhuis EJ, Videler JJ, Van Duren LA, Muller UK (2002) Applying digital particle image velocimetry to animal-generated flows: Traps, hurdles and cures in mapping steady and unsteady ows in re regimes between 10?2 and 10?5. Experiments in Fluids 33: 801–813. doi: 10.1007/s00348-002-0520-x
[34]  Dantec Dynamics A/S, Tonsbakken 16-18 - DK-2740 Skovlunde, Denmark (2012) DynamicStudio v3.20: User's Guide.
[35]  Kundu PK, Cohen IM (2008) Fluid Mechanics. Elsevier Inc., 4 edition.
[36]  Mathews JH, Fink KK (2004) Numerical Methods Using Matlab. Pearson, 4 edition.
[37]  Baker MA, Gibson CH (1987) Sampling turbulence in the stratified ocean: statistical consequences of strong intermittency. J Phys Oceanogr 17: 1817–1836. doi: 10.1175/1520-0485(1987)017<1817:stitso>2.0.co;2
[38]  Tennekes H, Lumley JL (1973) A first course in turbulence. MIT Press.
[39]  Schlichting H (1977) Boundary Layer Theory. McGraw-Hill, New York, 6th edition, 234–235, 599 pp.
[40]  Wu JS, Faeth GM (1993) Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA Journal 31: 1448–1455. doi: 10.2514/3.11794
[41]  Kirk KL (1985) Water ows produced by Daphnia and Diaptomus: Implications for prey selection by mechanosensory predators. Limnol Oceanogr 30(3): 679–686. doi: 10.4319/lo.1985.30.3.0679
[42]  Leal LG (1980) Particle motions in a viscous fluid. Ann Rev Fluid Mech 12: 435–476. doi: 10.1146/annurev.fl.12.010180.002251
[43]  Jiang H, Ki?rboe T (2010) Propulsion efficiency and imposed flow fields of a copepod jump. The Journal of Experimental Biology 214: 476–486. doi: 10.1242/jeb.049288
[44]  Yen J, Strickler J (1996) Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicuous? Invert Biol 115: 191–205. doi: 10.2307/3226930
[45]  Fields DM, Yen J (1997) Implications of the feeding current structure of Euchaeta rimana, a carnivorous pelagic copepod, on the spatial orientation of their prey. Journal of Plankton Research 19 no. 1: 79–95. doi: 10.1093/plankt/19.1.79
[46]  Ki?rboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: There are too few males. Limnol Oceanogr 52 (4): 1511–1522. doi: 10.4319/lo.2007.52.4.1511
[47]  Price HJ (1989) Swimming behavior of krill in response to algal patches: A mesocosm study. Limnol Oceanogr 34: 649–659. doi: 10.4319/lo.1989.34.4.0649
[48]  Tiselius P (1992) Behavior of Acartia tonsa in patchy food environments. Limnol Oceanogr 37: 1640–1651. doi: 10.4319/lo.1992.37.8.1640
[49]  Woodson CB, Mcmanus MA (2007) Foraging behavior can inuence dispersal of marine organisms. Limnol Oceanogr 52 (6): 2701–2709. doi: 10.4319/lo.2007.52.6.2701
[50]  Ardekani AM, Stocker R (2010) Stratlets: Low reynolds number point-force solutions in a stratified fluid. The American Physical Society, Physical review letter 105: 084502. doi: 10.1103/physrevlett.105.084502
[51]  Katija K, Dabiri J (2009) A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460: 624–627. doi: 10.1038/nature08207
[52]  Leshansky AM, Pismen LM (2010) Do small swimmers mix the ocean? Phys Rev E 82: 4. doi: 10.1103/physreve.82.025301
[53]  Yen J (2000) Life in transition: balancing inertial and viscous forces by planktonic copepods. Biol Bull 198: 213–224. doi: 10.2307/1542525
[54]  Duren LA, Stamhuis EJ, Videler JJ (2003) Copepod feeding currents: ow patterns, filtration rates and energetics. J Exp Biol 206: 255–267. doi: 10.1242/jeb.00078
[55]  Borazjani I, Sotiropoulos F, Malkiel E, Katz J (2010) On the role of copepod antennae in the production of hydrodynamic force during hopping. The Journal of Experimental Biology 213: 3019–3035. doi: 10.1242/jeb.043588
[56]  Doostmohammadi A, Stocker R, Ardekani AM (2012) Low-reynolds-number swimming at pycnoclines. Proc Natl Acad Sci U S A 109: 3856–3861. doi: 10.1073/pnas.1116210109
[57]  Eames I, Belcher SE, Hunt JCR (1994) Drift, partial drift and Darwin's proposition. J Fluid Mech 275: 201–223. doi: 10.1017/s0022112094002338
[58]  Elsinga GE, Scarano F, Wieneke B, Van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41: 933–947. doi: 10.1007/s00348-006-0212-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133