[1] | Ki?rboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev Camb Philos Soc 86: 311–339. doi: 10.1111/j.1469-185x.2010.00148.x
|
[2] | Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31: 121–133. doi: 10.1093/plankt/fbn109
|
[3] | Lombard F, Koski M, Ki?rboe T (2013) Copepods use chemical trails to find sinking marine snow aggregates. Limnol Oceanogr 58: 185–192. doi: 10.4319/lo.2013.58.1.0185
|
[4] | Pijanowska J, Kowalczewski A (1997) Predators can introduce swarming behaviour and locomotory responses in Daphnia. Freshwater Biol 37: 649–656. doi: 10.1046/j.1365-2427.1997.00192.x
|
[5] | Visser AW (2001) Hydromechanical signals in the plankton. Marine Ecology-Progress Series 222: 1–24. doi: 10.3354/meps222001
|
[6] | Ki?rboe T, Jiang HS, Colin SP (2010) Danger of zooplankton feeding: the uid signal generated by ambush-feeding copepods. Proc R Soc B-Biol Sci 277: 3229–3237. doi: 10.1098/rspb.2010.0629
|
[7] | Dabiri JO (2010) Role of vertical migration in biogenic ocean mixing. Geophysical research letters 37: L11602. doi: 10.1029/2010gl043556
|
[8] | Dewar W, Bingham R, Iverson R, Nowacek D, St Laurent L, et al. (2006) Does the marine biosphere mix the ocean? Journal of Marine Research 64: 541–561. doi: 10.1357/002224006778715720
|
[9] | Huntley M, Zhou M (2004) Influence of animals on turbulence in the sea. Marine Ecology Progress Series 273: 65–79. doi: 10.3354/meps273065
|
[10] | Kunze E (2011) Fluid mixing by swimming organisms in the low-reynolds-number limit. Journal of Marine Research 69: 591–601. doi: 10.1357/002224011799849435
|
[11] | Visser A (2007) Biomixing of the oceans? Science 316: 838–839. doi: 10.1126/science.1141272
|
[12] | Jiang H, Osborn TR, Meneveau C (2002) The flow field around a freely swimming copepod in steady motion. Part I: Theoretical analysis. J Plankton Res 24: 167–189. doi: 10.1093/plankt/24.3.167
|
[13] | Jiang H, Meneveau C, Osborn TR (2002) The ow field around a freely swimming copepod in steady motion. Part II: Numerical simulation. J Plankton Res 24: 191–213. doi: 10.1093/plankt/24.3.191
|
[14] | Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72.
|
[15] | Noss C, Lorke A (2014) Direct observation of biomixing by vertically migrating zooplankton. Limnol Oceanogr (in press).
|
[16] | Jiang HS, Osborn TR (2004) Hydrodynamics of copepods: A review. Surv Geophys 25: 339–370. doi: 10.1007/s10712-003-1282-6
|
[17] | Videler JJ, Stamhuis EJ, Muller UK, van Duren LA (2002) The scaling and structure of aquatic animal wakes. Integrative and Comparative Biology 42: 988–996. doi: 10.1093/icb/42.5.988
|
[18] | Walker JA (2002) Functional morphology and virtual models: Physical constraints on the design of oscillating wings, fins, legs, and feet at intermediate reynolds numbers. Integrative and Comparative Biology 42: 232–242. doi: 10.1093/icb/42.2.232
|
[19] | Arana DCP, Moore PA, Feinberg BA, DeWall J, Strickler JR (2007) Studying Daphnia feeding behavior as a black box: a novel electrochemical approach. Hydrobiologia 594: 153–163. doi: 10.1007/s10750-007-9080-7
|
[20] | Gries T, J?hnk K, Fields D, Strickler JR (1999) Size and structure of “footprints” produced by Daphnia: impact of animal size and density gradients. Journal of Plankton Research 21: 509–523. doi: 10.1093/plankt/21.3.509
|
[21] | Kohlhage K (1994) The economy of paddle-swimming: The role of added waters and viscosity in the locomotion of Daphnia magna. Zool Beitr 35: 47–54.
|
[22] | Morris MJ, Gust G, Torres JJ (1985) Propulsion efficiency and cost of transport for copepods: A hydromechanical model of crustacean swimming. Mar Biol 86: 283–295. doi: 10.1007/bf00397515
|
[23] | Morris MJ, Kohlhage K, Gust G (1990) Mechanics and energetics of swimming the small copepod Acanthocylops robustus (Cylopoida). Mar Biol 107: 83–91. doi: 10.1007/bf01313245
|
[24] | Noss C, Lorke A (2012) Zooplankton induced currents and uxes in stratified waters. Water Qual Res J Can 47: 276–285. doi: 10.2166/wqrjc.2012.135
|
[25] | OECD (2004). Guideline for testing of chemicals 202. Organisation for Economic Cooperation and Development.
|
[26] | Ranta E, Bengtsson J, McManus J (1993) Growth, size and shape of Daphnia longispina, D. magna and D. pulex. Ann Zool Fennici 30: 299–311.
|
[27] | Ringelberg J (1999) The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol Rev 74: 397–423. doi: 10.1017/s0006323199005381
|
[28] | Ringelberg J, Flik BJG, Aanen D, Van Gool E (1997) Amplitude of vertical migration (DVM) is a function of fish biomass, a hypothesis. Archiv für Hydrobiologie/Beihefte Ergebnisse Limnologie 49: 71–78.
|
[29] | Van Gool E, Ringelberg J (1997) The effect of accelerations in light increase on the phototactic downward swimming of Daphnia and the relevance to diel vertical migration. Journal of Plankton Research 19: 2041–2050. doi: 10.1093/plankt/19.12.2041
|
[30] | Noss C, Lorke A, Neuhaus E (2013) Three-dimensional tracking of multiple aquatic organisms with a two camera system. Limnol Oceanogr Methods 11: 139–150. doi: 10.4319/lom.2013.11.139
|
[31] | Seuront L, Brewer MC, Strickler JR (2004) Quantifying zooplankton swimming behavior: the question of scale. Handbook of scaling methods in aquatic ecology: measurement, analysis, simulation: 333–359.
|
[32] | Strutton PG (2007) Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation. CRC Press, 1st edition, 338–339 pp.
|
[33] | Stamhuis EJ, Videler JJ, Van Duren LA, Muller UK (2002) Applying digital particle image velocimetry to animal-generated flows: Traps, hurdles and cures in mapping steady and unsteady ows in re regimes between 10?2 and 10?5. Experiments in Fluids 33: 801–813. doi: 10.1007/s00348-002-0520-x
|
[34] | Dantec Dynamics A/S, Tonsbakken 16-18 - DK-2740 Skovlunde, Denmark (2012) DynamicStudio v3.20: User's Guide.
|
[35] | Kundu PK, Cohen IM (2008) Fluid Mechanics. Elsevier Inc., 4 edition.
|
[36] | Mathews JH, Fink KK (2004) Numerical Methods Using Matlab. Pearson, 4 edition.
|
[37] | Baker MA, Gibson CH (1987) Sampling turbulence in the stratified ocean: statistical consequences of strong intermittency. J Phys Oceanogr 17: 1817–1836. doi: 10.1175/1520-0485(1987)017<1817:stitso>2.0.co;2
|
[38] | Tennekes H, Lumley JL (1973) A first course in turbulence. MIT Press.
|
[39] | Schlichting H (1977) Boundary Layer Theory. McGraw-Hill, New York, 6th edition, 234–235, 599 pp.
|
[40] | Wu JS, Faeth GM (1993) Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA Journal 31: 1448–1455. doi: 10.2514/3.11794
|
[41] | Kirk KL (1985) Water ows produced by Daphnia and Diaptomus: Implications for prey selection by mechanosensory predators. Limnol Oceanogr 30(3): 679–686. doi: 10.4319/lo.1985.30.3.0679
|
[42] | Leal LG (1980) Particle motions in a viscous fluid. Ann Rev Fluid Mech 12: 435–476. doi: 10.1146/annurev.fl.12.010180.002251
|
[43] | Jiang H, Ki?rboe T (2010) Propulsion efficiency and imposed flow fields of a copepod jump. The Journal of Experimental Biology 214: 476–486. doi: 10.1242/jeb.049288
|
[44] | Yen J, Strickler J (1996) Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicuous? Invert Biol 115: 191–205. doi: 10.2307/3226930
|
[45] | Fields DM, Yen J (1997) Implications of the feeding current structure of Euchaeta rimana, a carnivorous pelagic copepod, on the spatial orientation of their prey. Journal of Plankton Research 19 no. 1: 79–95. doi: 10.1093/plankt/19.1.79
|
[46] | Ki?rboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: There are too few males. Limnol Oceanogr 52 (4): 1511–1522. doi: 10.4319/lo.2007.52.4.1511
|
[47] | Price HJ (1989) Swimming behavior of krill in response to algal patches: A mesocosm study. Limnol Oceanogr 34: 649–659. doi: 10.4319/lo.1989.34.4.0649
|
[48] | Tiselius P (1992) Behavior of Acartia tonsa in patchy food environments. Limnol Oceanogr 37: 1640–1651. doi: 10.4319/lo.1992.37.8.1640
|
[49] | Woodson CB, Mcmanus MA (2007) Foraging behavior can inuence dispersal of marine organisms. Limnol Oceanogr 52 (6): 2701–2709. doi: 10.4319/lo.2007.52.6.2701
|
[50] | Ardekani AM, Stocker R (2010) Stratlets: Low reynolds number point-force solutions in a stratified fluid. The American Physical Society, Physical review letter 105: 084502. doi: 10.1103/physrevlett.105.084502
|
[51] | Katija K, Dabiri J (2009) A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460: 624–627. doi: 10.1038/nature08207
|
[52] | Leshansky AM, Pismen LM (2010) Do small swimmers mix the ocean? Phys Rev E 82: 4. doi: 10.1103/physreve.82.025301
|
[53] | Yen J (2000) Life in transition: balancing inertial and viscous forces by planktonic copepods. Biol Bull 198: 213–224. doi: 10.2307/1542525
|
[54] | Duren LA, Stamhuis EJ, Videler JJ (2003) Copepod feeding currents: ow patterns, filtration rates and energetics. J Exp Biol 206: 255–267. doi: 10.1242/jeb.00078
|
[55] | Borazjani I, Sotiropoulos F, Malkiel E, Katz J (2010) On the role of copepod antennae in the production of hydrodynamic force during hopping. The Journal of Experimental Biology 213: 3019–3035. doi: 10.1242/jeb.043588
|
[56] | Doostmohammadi A, Stocker R, Ardekani AM (2012) Low-reynolds-number swimming at pycnoclines. Proc Natl Acad Sci U S A 109: 3856–3861. doi: 10.1073/pnas.1116210109
|
[57] | Eames I, Belcher SE, Hunt JCR (1994) Drift, partial drift and Darwin's proposition. J Fluid Mech 275: 201–223. doi: 10.1017/s0022112094002338
|
[58] | Elsinga GE, Scarano F, Wieneke B, Van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41: 933–947. doi: 10.1007/s00348-006-0212-z
|