全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?

DOI: 10.1371/journal.pone.0092416

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

References

[1]  Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70: 271–288. doi: 10.1002/dneu.20774
[2]  Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14: 7–23. doi: 10.1038/nrn3379
[3]  Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5: 1177–1184. doi: 10.1038/nn927
[4]  Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, et al. (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319: 1683–1687. doi: 10.1126/science.1152864
[5]  McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15: 791–803. doi: 10.1016/0896-6273(95)90171-x
[6]  Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, et al. (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16: 1137–1145. doi: 10.1016/s0896-6273(00)80140-3
[7]  Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42: 81–89. doi: 10.1016/j.mcn.2009.06.009
[8]  Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3: 12–29. doi: 10.2174/1874467211003010012
[9]  Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144: 97–112. doi: 10.1196/annals.1418.005
[10]  Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122: 130–143. doi: 10.1196/annals.1403.009
[11]  Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6: 603–614. doi: 10.1038/nrn1726
[12]  Barker PA (2009) Whither proBDNF? Nat Neurosci 12: 105–106. doi: 10.1038/nn0209-105
[13]  Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29: 12764–12767. doi: 10.1523/jneurosci.3566-09.2009
[14]  Samson AL, Medcalf RL (2006) Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 50: 673–678. doi: 10.1016/j.neuron.2006.04.013
[15]  Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32: 48–55. doi: 10.1016/j.tins.2008.09.006
[16]  Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, et al. (1996) Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci U S A 93: 8699–8704. doi: 10.1073/pnas.93.16.8699
[17]  Madani R, Hulo S, Toni N, Madani H, Steimer T, et al. (1999) Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J 18: 3007–3012. doi: 10.1093/emboj/18.11.3007
[18]  Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, et al. (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 20: 542–549.
[19]  Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91: 917–925. doi: 10.1016/s0092-8674(00)80483-3
[20]  Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, et al. (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306: 487–491. doi: 10.1126/science.1100135
[21]  Nagappan G, Zaitsev E, Senatorov VV Jr, Yang J, Hempstead BL, et al. (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 106: 1267–1272. doi: 10.1073/pnas.0807322106
[22]  Anderson CM, Norquist BA, Vesce S, Nicholls DG, Soine WH, et al. (2002) Barbiturates induce mitochondrial depolarization and potentiate excitotoxic neuronal death. J Neurosci 22: 9203–9209.
[23]  Kotermanski SE, Johnson JW, Thiels E (2013) Comparison of behavioral effects of the NMDA receptor channel blockers memantine and ketamine in rats. Pharmacol Biochem Behav 109: 67–76. doi: 10.1016/j.pbb.2013.05.005
[24]  Quirie A, Hervieu M, Garnier P, Demougeot C, Mossiat C, et al. (2012) Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One 7: e44218. doi: 10.1371/journal.pone.0044218
[25]  Madinier A, Bertrand N, Rodier M, Quirie A, Mossiat C, et al. (2013) Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: involvement of BDNF? Neuroscience 231: 169–181. doi: 10.1016/j.neuroscience.2012.11.054
[26]  Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22: 123–131. doi: 10.1080/08977190410001723308
[27]  Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64: 238–258. doi: 10.1124/pr.111.005108
[28]  Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948. doi: 10.1126/science.1065057
[29]  Horii-Hayashi N, Yoshikawa M, Matsusue Y, Ishizaka S, Nishi M, et al. (2011) Environmental stimulation changes tissue-type plasminogen activator activity in the adult mouse hippocampus. Neurochem Int 58: 1–4. doi: 10.1016/j.neuint.2010.10.007
[30]  Obiang P, Maubert E, Bardou I, Nicole O, Launay S, et al. (2011) Enriched housing reverses age-associated impairment of cognitive functions and tPA-dependent maturation of BDNF. Neurobiol Learn Mem 96: 121–129. doi: 10.1016/j.nlm.2011.03.004
[31]  Segawa M, Morinobu S, Matsumoto T, Fuchikami M, Yamawaki S (2013) Electroconvulsive seizure, but not imipramine, rapidly up-regulates pro-BDNF and t-PA, leading to mature BDNF production, in the rat hippocampus. Int J Neuropsychopharmacol 16: 339–350. doi: 10.1017/s1461145712000053
[32]  Ding Q, Ying Z, Gomez-Pinilla F (2011) Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience 192: 773–780. doi: 10.1016/j.neuroscience.2011.06.032
[33]  Yeh CM, Huang CC, Hsu KS (2012) Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol 590: 991–1010. doi: 10.1113/jphysiol.2011.222042
[34]  Benchenane K, Berezowski V, Ali C, Fernandez-Monreal M, Lopez-Atalaya JP, et al. (2005) Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation 111: 2241–2249. doi: 10.1161/01.cir.0000163542.48611.a2
[35]  Vivien D, Buisson A (2000) Serine protease inhibitors: novel therapeutic targets for stroke? J Cereb Blood Flow Metab 20: 755–764. doi: 10.1097/00004647-200005000-00001
[36]  Sartori CR, Vieira AS, Ferrari EM, Langone F, Tongiorgi E, et al. (2011) The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience 180: 9–18. doi: 10.1016/j.neuroscience.2011.02.055
[37]  Furtmuller R, Schlag MG, Berger M, Hopf R, Huck S, et al. (2002) Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid(A) receptor antagonistic effect. J Pharmacol Exp Ther 301: 168–173. doi: 10.1124/jpet.301.1.168
[38]  Menoud PA, Sappino N, Boudal-Khoshbeen M, Vassalli JD, Sappino AP (1996) The kidney is a major site of alpha(2)-antiplasmin production. J Clin Invest 97: 2478–2484. doi: 10.1172/jci118694
[39]  Kawashita E, Kanno Y, Asayama H, Okada K, Ueshima S, et al. (2013) Involvement of alpha2-antiplasmin in dendritic growth of hippocampal neurons. J Neurochem 126: 58–69. doi: 10.1111/jnc.12281
[40]  Taniguchi Y, Inoue N, Morita S, Nikaido Y, Nakashima T, et al. (2011) Localization of plasminogen in mouse hippocampus, cerebral cortex, and hypothalamus. Cell Tissue Res 343: 303–317. doi: 10.1007/s00441-010-1110-5
[41]  Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, et al. (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7: 59–64. doi: 10.1038/83358
[42]  Benchenane K, Castel H, Boulouard M, Bluthe R, Fernandez-Monreal M, et al. (2007) Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J Cell Sci 120: 578–585. doi: 10.1242/jcs.03354
[43]  Pawlak R, Melchor JP, Matys T, Skrzypiec AE, Strickland S (2005) Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci U S A 102: 443–448. doi: 10.1073/pnas.0406454102
[44]  Obiang P, Macrez R, Jullienne A, Bertrand T, Lesept F, et al. (2012) GluN2D subunit-containing NMDA receptors control tissue plasminogen activator-mediated spatial memory. J Neurosci 32: 12726–12734. doi: 10.1523/jneurosci.6202-11.2012
[45]  Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, et al. (2008) The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. J Biol Chem 283: 12004–12013. doi: 10.1074/jbc.m707607200
[46]  Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122: 647–657. doi: 10.1016/j.neuroscience.2003.08.001
[47]  Kolarow R, Brigadski T, Lessmann V (2007) Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J Neurosci 27: 10350–10364. doi: 10.1523/jneurosci.0692-07.2007
[48]  Baron A, Montagne A, Casse F, Launay S, Maubert E, et al. (2010) NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ 17: 860–871. doi: 10.1038/cdd.2009.172
[49]  Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14: 383–400. doi: 10.1038/nrn3504
[50]  Echeverry R, Wu J, Haile WB, Guzman J, Yepes M (2010) Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest 120: 2194–2205. doi: 10.1172/jci41722
[51]  Liot G, Benchenane K, Leveille F, Lopez-Atalaya JP, Fernandez-Monreal M, et al. (2004) 2,7-Bis-(4-amidinobenzylidene)-cyclohept?an-1-onedihydrochloride, tPA stop, prevents tPA-enhanced excitotoxicity both in vitro and in vivo. J Cereb Blood Flow Metab 24: 1153–1159. doi: 10.1097/01.wcb.0000134476.93809.75
[52]  Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361: 1545–1564. doi: 10.1098/rstb.2006.1894
[53]  Aas M, Haukvik UK, Djurovic S, Bergmann O, Athanasiu L, et al. (2013) BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses. Prog Neuropsychopharmacol Biol Psychiatry 46: 181–188. doi: 10.1016/j.pnpbp.2013.07.008
[54]  Parcq J, Bertrand T, Montagne A, Baron AF, Macrez R, et al. (2012) Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ 19: 1983–1991. doi: 10.1038/cdd.2012.86

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133