[1] | Waldman B (1988) The ecology of kin recognition. Annu Rev Ecol Syst 19: 543–571. doi: 10.1146/annurev.es.19.110188.002551
|
[2] | Kitchen AM, Gese EM, Waits LP, Karki SM, Schauster ER (2005) Genetic and spatial structure within a swift fox population. J Anim Ecol 74: : 1173–1181. Available: http://doi.wiley.com/10.1111/j.1365-2656?.2005.01017.x. Accessed 3 August 2012.
|
[3] | Melnick DJ, Hoelzer GA (1992) Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int J Primatol 13: 379–393 Available: http://www.springerlink.com/index/10.100?7/BF02547824.
|
[4] | Holmes WG, Sherman PW (1983) Kin Recognition in Animals. Am Sci 71: 46–55.
|
[5] | Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28: 1140–1162. doi: 10.1016/s0003-3472(80)80103-5
|
[6] | Waser PM, Jones WT (1983) Natal philopatry among solitary mammals. Q Rev Biol 58: 355–390. doi: 10.1086/413385
|
[7] | Wronski T, Apio A (2006) Home-range overlap, social vicinity and agonistic interactions denoting matrilineal organisation in bushbuck, Tragelaphus scriptus. Behav Ecol Sociobiol 59: 819–828. Available: http://www.springerlink.com/index/10.100?7/s00265-005-0128-2. Accessed: 13 Aug 2012.
|
[8] | McEachern MB, Eadie JM, Vuren DHV (2007) Local genetic structure and relatedness in a solitary mammal, Neotoma fuscipes. Behav Ecol Sociobiol 61: : 1459–1469. Available: http://www.springerlink.com/index/10.100?7/s00265-007-0378-2. Accessed: 13 Aug 2012.
|
[9] | Wronski T (2005) Home-range overlap and spatial organization as indicators for territoriality among male bushbuck (Tragelaphus scriptus). J Zool 266: 227–235 doi:10.1017/S0952836905006825.
|
[10] | Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Proc R Soc London Ser B Biol Sci 68: 41–55. doi: 10.1111/j.1095-8312.1999.tb01157.x
|
[11] | Storz JF (1999) Genetic consequences of mammalian social structure. J Mammal 80: 553–569. doi: 10.2307/1383301
|
[12] | Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10: 265–284 Available: http://www.ncbi.nlm.nih.gov/pubmed/11298?944.
|
[13] | Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9: 1279–1301. Available: http://www.ncbi.nlm.nih.gov/pubmed/21564?900. Accessed: 20 Jul 2012.
|
[14] | Noss AJ, Cuéllar RL, Barrientos J, Maffei L, Cuéllar E, et al. (2003) A camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in bolivian dry forests. Tapir Conserv 12: 24–31.
|
[15] | Tobler MW (2008) The ecology of the lowland tapir in Madre de Dios, Peru: Using new technologies to study large rainforest mammals. Texas A&M University, Texas.
|
[16] | Medici EP (2010) Assessing the viability of lowland tapir populations in a fragmented landscape University of Kent Canterbury, United Kingdom.
|
[17] | Eisenberg JF, Thorington RWJ (1973) A preliminary analysis of a neotropical mammal fauna. Biotropica 5: 150–161. doi: 10.2307/2989807
|
[18] | Roper TJ, Conradt L, Butler J, Christian SE, Ostler J, et al. (1993) Territorial marking with faeces in badgers (Meles meles): a comparison of boundary and hinterland latrine use. Behaviour 127: 289–307 Available: http://www.ingentaconnect.com/content/br?ill/beh/1993/00000127/F0020003/art00007.
|
[19] | Jordan NR, Cherry MI, Manser MB (2007) Latrine distribution and patterns of use by wild meerkats: implications for territory and mate defence. Anim Behav 73: 613–622. Available: http://linkinghub.elsevier.com/retrieve/?pii/S0003347207000152. Accessed: 14 Aug 2012.
|
[20] | Ralls K (1971) Mammalian scent marking. Science (80-) 171: 443–449. doi: 10.1126/science.171.3970.443
|
[21] | Rostain RR, Ben-David M, Groves P, Randall JA (2004) Why do river otters scent-mark? An experimental test of several hypotheses. Anim Behav 68: 703–711. Available: http://linkinghub.elsevier.com/retrieve/?pii/S0003347204002362. Accessed: 1 Aug 2012.
|
[22] | Pope TR (1992) The influence of dispersal patterns and mating system on genetic differentiation within and between populations of the red howler monkey (Alouatta seniculus). Evolution (N Y) 46: 1112–1128. doi: 10.2307/2409760
|
[23] | Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (1997) Plano de manejo fase 1: Reserva Biológica do Uatum?. Eletronorte/Ibama, Brasilia.
|
[24] | García MJ, Medici EP, Naranjo EJ, Novarino W, Leonardo RS (2012) Distribution, habitat and adaptability of the genus Tapirus. Integr Zool 7: 346–355. Available: http://www.ncbi.nlm.nih.gov/pubmed/23253?366. Accessed: 9 Aug 2013.
|
[25] | ESRI (2008) ArcGis 9.3. ESRI, Redland.
|
[26] | Longmire JL, Lewis AK, Brown NC, Buckingham JM, Clark LM, et al. (1988) Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics 2: 14–24 Available: http://www.ncbi.nlm.nih.gov/pubmed/33844?38.
|
[27] | Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9: 1583–1590 Available: http://www.ncbi.nlm.nih.gov/pubmed/11050?553.
|
[28] | Garnier JN, Bruford MW, Goossens B (2001) Mating system and reproductive skew in the black rhinoceros. Mol Ecol 10: 2031–2041. doi: 10.1046/j.0962-1083.2001.01338.x
|
[29] | Gon?alves da Silva A, Lalonde DR, Russello MA (2009) Isolation and characterization of microsatellite loci in a Neotropical ungulate, the lowland tapir (Tapirus terrestris). Conserv Genet Resour 1: 39–41 doi:10.1007/s12686-009-9009-8.
|
[30] | Sanches A, Figueiredo MG, Hatanaka T, Fonseca FPP, Silveira L, et al. (2009) Microsatellite loci isolated from the lowland tapir (Tapirus terrestris), one of the largest Neotropical mammal. Conserv Genet Resour 1: 115–117 doi:10.1007/s12686-009-9028-5.
|
[31] | Norton JE, Ashley MV (2004) Genetic variability and population structure among wild Baird ' s tapirs. Anim Conserv 7: 211–220 doi:10.1017/S1367943004001295.
|
[32] | Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18: 233–234. doi: 10.1038/72708
|
[33] | DeWoody JA, Schupp J, Kenefic L, Busch J, Murfitt L, et al. (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping. Biotechniques 37: 348–352.
|
[34] | Taberlet P, Waits LP, Luikart G (1999) Non-invasive genetic sampling: Look before you leap. Trends Ecol Evol 14: 323–327. doi: 10.1016/s0169-5347(99)01637-7
|
[35] | Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J Wildl Manage 69: 1419–1433. doi: 10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2
|
[36] | Broquet T, Ménard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8: : 249–260. Available: http://www.springerlink.com/index/10.100?7/s10592-006-9146-5. Accessed: 19 Jul 2012.
|
[37] | Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, et al. (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24: 3189–3194 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=146079&tool=pmcentrez&?rendertype=abstract.
|
[38] | Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. Available: http://doi.wiley.com/10.1111/j.1471-8286?.2004.00684.x. Accessed: 12 Jul 2012.
|
[39] | Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4: 347–354. doi: 10.1111/j.1365-294x.1995.tb00227.x
|
[40] | Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2: 377–379. doi: 10.1046/j.1471-8286.2002.00228.x
|
[41] | Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10: 249–256. doi: 10.1046/j.1365-294x.2001.01185.x
|
[42] | Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567 doi:10.1111/j.1755-0998.2010.02847.x.
|
[43] | Rice WR (1989) Analyzing tables of statistical tests. Evolution (N Y) 43: 223–225 doi:10.2307/2409177.
|
[44] | Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
|
[45] | Kuhner MK (2009) Coalescent genealogy samplers: windows into population history. Trends Ecol Evol 24: 86–93. Available: http://www.ncbi.nlm.nih.gov/pubmed/19101?058. Accessed: 6 Aug 2013.
|
[46] | Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7: 457–472. doi: 10.1214/ss/1177011136
|
[47] | Wright S (1969) Evolution and the Genetics of Populations. Volume 2. The Theory of Gene Frequencies. Chicago, IL: University of Chicago Press.
|
[48] | Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98: 4563–4568. doi: 10.1073/pnas.081068098
|
[49] | Crawford AM, Cuthbertson RP (1996) Mutations in sheep microsatellites. Genome Res 6: 876–879. Available: http://www.genome.org/cgi/doi/10.1101/gr?.6.9.876. Accessed: 31 Jul 2012.
|
[50] | Rooney AP, Honeycutt RL, Davis SK, Derr JN (1999) Evaluating a putative bottleneck in a population of bowhead whales from patterns of microsatellite diversity and genetic disequilibria. J Mol Evol 49: 682–690. doi: 10.1007/pl00006589
|
[51] | Spong G, Johansson M, Bj?rklund M (2000) High genetic variation in leopards indicates large and long-term stable effective population size. Mol Ecol 9: 1773–1782 Available: http://www.ncbi.nlm.nih.gov/pubmed/11091?313.
|
[52] | Van De Casteele T, Galbusera P, Matthysen E (2001) A comparison of microsatellite-based pairwise relatedness estimators. Mol Ecol 10: 1539–1549. doi: 10.1046/j.1365-294x.2001.01288.x
|
[53] | Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18: 503–511. Available: http://linkinghub.elsevier.com/retrieve/?pii/S0169534703002258. Accessed: 17 Jul 2012.
|
[54] | Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11: 141–145. Available: http://www.ncbi.nlm.nih.gov/pubmed/21429?111. Accessed: 22 May 2013.
|
[55] | Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10: 551–555. Available: http://www.ncbi.nlm.nih.gov/pubmed/21565?056. Accessed: 14 July 2012.
|
[56] | Konovalov DA, Manning C, Henshaw MT (2004) KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol Ecol Notes 4: 779–782 doi:10.1111/j.1471-8286.2004.00796.x.
|
[57] | Belkhir K, Castric V, Bonhomme F (2002) IDENTIX, a software to test for relatedness in a population using permutation methods. Mol Ecol Notes 2: 611–614 doi:10.1046/j.1471-8278.
|
[58] | Kass RE, Raftery AE (1995) Bayes Factors. J Am Stat Assoc 90: 773–795. doi: 10.1080/01621459.1995.10476572
|
[59] | Lynch M, Ritland K (1999) Estimation of Pairwise Relatedness With Molecular Markers. Genetics 152: 1753–1766.
|
[60] | Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution (N Y) 43: 258–275. doi: 10.2307/2409206
|
[61] | Team RDC (2011) R: A language and environment for statistical computing. R Found Stat Comput Vienna, Austria. Available: http://www.r-project.org/.
|
[62] | Bjornstad ON (2012) ncf: spatial nonparametric covariance functions. R Packag version 11-4. Available: http://cran.r-project.org/package=ncf.
|
[63] | Epperson BK, Li T (1996) Measurement of genetic structure within populations using Moran's spatial autocorrelation statistics. Proc Natl Acad Sci U S A 93: 10528–10532. doi: 10.1073/pnas.93.19.10528
|
[64] | Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2: 618–620 Available: http://www.blackwell-synergy.com/doi/abs?/10.1046/j.1471-8286.2002.00305.x.
|
[65] | Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, et al. (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11: 857–868 Available: http://www.ncbi.nlm.nih.gov/pubmed/11975?702.
|
[66] | Brinkman TJ, Schwartz MK, Person DK, Pilgrim KL, Hundertmark KJ (2010) Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conserv Genet 11: 1547–1552. Available: http://www.springerlink.com/index/10.100?7/s10592-009-9928-7. Accessed: 13 Aug 2012.
|
[67] | Bellemain E, Swenson JE, Tallmon D, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: Four methods for brown bears. Conserv Biol 19: 150–161 Available: http://doi.wiley.com/10.1111/j.1523-1739?.2005.00549.x.
|
[68] | Holzhauer SIJ, Ekschmitt K, Sander A-C, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21: : 891–899. Available: http://www.springerlink.com/index/10.100?7/s10980-005-0438-9. Accessed: 14 Aug 2012.
|
[69] | Barongi RA (1993) Husbandry and conservation of tapirs. Int Zoo Yearb 32: 7–15. doi: 10.1111/j.1748-1090.1992.tb02474.x
|
[70] | Caughley G (1966) Mortality patterns in mammals. Ecology 47: 906–918. doi: 10.2307/1935638
|
[71] | De Thoisy B, Gon?alves da Silva A, Ruiz-García M, Tapia A, Ramirez O, et al. (2010) Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the lowland tapir (Tapirus terrestris). BioMed Cent Evol Biol 10: 278 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2949869&tool=pmcentrez?&rendertype=abstract.
|
[72] | De Thoisy B, Richard-Hansen C, Catzeflis F, Lavergne A (2006) Population dynamics and DNA microsatellite survey in the lowland tapir. Tapir Conserv 20: 14–16.
|
[73] | Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22: 1185–1192. Available: http://www.ncbi.nlm.nih.gov/pubmed/15703?244. Accessed: 13 Jul 2012.
|
[74] | Gon?alves da Silva A, Lalonde DR, Quse V, Shoemaker A, Russello MA (2010) Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation. J Hered 101: 581–590. Available: http://www.ncbi.nlm.nih.gov/pubmed/20484?384. Accessed: 13 Aug 2012.
|
[75] | IUCN (2011) IUCN Red List of Threatened Species. Version 2011.2. Available http//www.iucnredlist.org Accessed: 22 Feb 2011.
|
[76] | Clutton-Brock TH (1989) Review Lecture: Mammalian Mating Systems. Proc R Soc B Biol Sci 236: 339–372. Available: http://rspb.royalsocietypublishing.org/c?gi/doi/10.1098/rspb.1989.0027. Accessed: 9 Aug 2013.
|
[77] | Janis CM (1988) New ideas in ungulate phylogeny and evolution. Trends Ecol Evol 3: 291–297 Available: http://www.ncbi.nlm.nih.gov/pubmed/21227?261.
|
[78] | Geist V (1974) On the Relationship of Social Evolution and Ecology in Ungulates. Am Zool 14: 205–220 Available: http://icb.oxfordjournals.org/cgi/doi/10?.1093/icb/14.1.205.
|
[79] | of Cranbrook E, Piper PJ (2013) Paleontology to policy: the Quaternary history of Southeast Asian tapirs (Tapiridae) in relation to large mammal species turnover, with a proposal for conservation of Malayan tapir by reintroduction to Borneo. Integr Zool 8: 95–120. Available: http://www.ncbi.nlm.nih.gov/pubmed/23586?564. Accessed: 2 Sep 2013.
|
[80] | Macfadden BJ (2006) Extinct mammalian biodiversity of the ancient New World tropics. Trends Ecol Evol 21: 157–165. Available: http://www.ncbi.nlm.nih.gov/pubmed/16701?492. Accessed: 7 Aug 2013.
|
[81] | Temple HJ, Hoffman JI, Amos W (2006) Dispersal, philopatry and intergroup relatedness: fine-scale genetic structure in the white-breasted thrasher, Ramphocinclus brachyurus. Mol Ecol 15: 3449–3458. Available: http://www.ncbi.nlm.nih.gov/pubmed/16968?282. Accessed: 13 Jul 2012.
|
[82] | Holmes WG, Sherman PW (1983) Kin recognition in animals: The prevalence of nepotism among animals raises basic questions about how and why they distinguish relatives from unrelated individuals. Am Sci 71: 46–55.
|
[83] | Hirsch BT, Prange S, Hauver SA, Gehrt SD (2013) Genetic relatedness does not predict racoon social network structure. Anim Behav 85: 463–470. Available: http://linkinghub.elsevier.com/retrieve/?pii/S000334721200560X. Accessed: 16 Jan 2014.
|
[84] | Foerster CR, Vaughan C (2002) Home range, habitat use, and activity of baird's tapir in Costa Rica. Biotropica 34: 423–437. doi: 10.1646/0006-3606(2002)034[0423:hrhuaa]2.0.co;2
|