全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Foraging Responses of Black-Legged Kittiwakes to Prolonged Food-Shortages around Colonies on the Bering Sea Shelf

DOI: 10.1371/journal.pone.0092520

Full-Text   Cite this paper   Add to My Lib

Abstract:

We hypothesized that changes in southeastern Bering Sea foraging conditions for black-legged kittiwakes (Rissa tridactyla) have caused shifts in habitat use with direct implications for population trends. To test this, we compared at-sea distribution, breeding performance, and nutritional stress of kittiwakes in three years (2008–2010) at two sites in the Pribilof Islands, where the population has either declined (St. Paul) or remained stable (St. George). Foraging conditions were assessed from changes in (1) bird diets, (2) the biomass and distribution of juvenile pollock (Theragra chalcogramma) in 2008 and 2009, and (3) eddy kinetic energy (EKE; considered to be a proxy for oceanic prey availability). In years when biomass of juvenile pollock was low and patchily distributed in shelf regions, kittiwake diets included little or no neritic prey and a much higher occurrence of oceanic prey (e.g. myctophids). Birds from both islands foraged on the nearby shelves, or made substantially longer-distance trips overnight to the basin. Here, feeding was more nocturnal and crepuscular than on the shelf, and often occurred near anticyclonic, or inside cyclonic eddies. As expected from colony location, birds from St. Paul used neritic waters more frequently, whereas birds from St. George typically foraged in oceanic waters. Despite these distinctive foraging patterns, there were no significant differences between colonies in chick feeding rates or fledging success. High EKE in 2010 coincided with a 63% increase in use of the basin by birds from St. Paul compared with 2008 when EKE was low. Nonetheless, adult nutritional stress, which was relatively high across years at both colonies, peaked in birds from St. Paul in 2010. Diminishing food resources in nearby shelf habitats may have contributed to kittiwake population declines at St Paul, possibly driven by increased adult mortality or breeding desertion due to high foraging effort and nutritional stress.

References

[1]  Ainley DA, Ford RG, Brown ED, Suryan RM, Irons DB (2003) Prey resources, competition, and geographic structure of kittiwake colonies in Prince William Sound. Ecology 84: 709–723. doi: 10.1890/0012-9658(2003)084[0709:prcags]2.0.co;2
[2]  Ashmole NP (1963) The regulation of numbers of tropical oceanic birds. Ibis 103: 458–473. doi: 10.1111/j.1474-919x.1963.tb06766.x
[3]  Atwood E, Duffy-Anderson JT, Horne JK, Ladd C (2010) Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska. Fish Oceanogr 19: 493–507. doi: 10.1111/j.1365-2419.2010.00559.x
[4]  Beamish RJ, Leask KD, Ivanov OA, Balanov AA, Orlov AM, et al. (1999) The ecology, distribution, and abundance of midwater fishes of the Subarctic Pacific gyres. Prog Oceanogr 43: 399–442. doi: 10.1016/s0079-6611(99)00017-8
[5]  Benoit-Bird KJ, Kuletz K, Heppell S, Jones N, Hoover B (2011) Active acoustic examination of the diving behavior of murres foraging on patch prey. Mar Ecol Prog Ser 443: 217–235. doi: 10.3354/meps09408
[6]  Benoit-Bird K, Battaile BC, Heppell SA, Hoover B, Irons DB, et al. (2013) Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoSONE 8(1): e53348 doi:10.1371/journal.pone.0053348.
[7]  Benowitz-Fredericks ZM, Shultz MT, Kitaysky AS (2008) Stress hormones suggest opposite trends of food availability for planktivorous and piscivorous seabirds in two years. Deep Sea Res II 55: 1868–1876. doi: 10.1016/j.dsr2.2008.04.007
[8]  Bertrand S, Joo R, Arbulu Smet C, Tremblay Y, Barbraud C, et al. (2012) Local depletion by a fishery can affect seabird foraging. J Appl Ecol 49: 1168–1177 doi: 10.1111/j.1365-2664.2012.02190.x.
[9]  Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, et al. (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78: 363–376. doi: 10.1016/j.jmarsys.2008.11.022
[10]  Braun BM, Hunt GL Jr (1983) Brood reduction in black-legged kittiwakes. Auk 100: 469–476.
[11]  Burger AE, Shaffer SA (2008) Application of tracking and data-logging technology in research and conservation of seabirds. Auk 125: 253–264. doi: 10.1525/auk.2008.1408
[12]  Byrd GV, Schmutz JA, Renner HM (2008) Contrasting population trends of piscivorous seabirds in the Pribilof Islands: a 30 year perspective. Deep Sea Res II 55: 1846–1855. doi: 10.1016/j.dsr2.2008.04.004
[13]  Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91: 167–216. doi: 10.1016/j.pocean.2011.01.002
[14]  Chaurand T, Weimerskirch H (1994) Regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63: 275–282. doi: 10.2307/5546
[15]  Clark CW, Ydenberg RC (1990) The risks of parenthood. I. General theory and applications. Evol Ecol 4: 21–34 doi: 10.1007/BF02270712.
[16]  Cotté C, Park YH, Guinet C, Bost CA (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc R Soc Lond B 274: 2385–2391. doi: 10.1098/rspb.2007.0775
[17]  Coyle KO, Eisner LB, Mueter FJ, Pinchuk AI, Janout MA, et al. (2011) Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fish Oceanogr 20: 139–156 doi:10.1111/j.1365-2419.2011.00574.x.
[18]  Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJM, et al. (2011) Global seabird response to forage fish depletion—One-third for the birds. Science 334: 1703–1706. doi: 10.1126/science.1212928
[19]  Dell J, Wilcox C, Hobday AJ (2011) Estimation of yellowfin tuna (Thunnus albacares) habitat in waters adjacent to Australia’s East Coast: making the most of commercial catch data. Fish Oceanogr 20: 383–396. doi: 10.1111/j.1365-2419.2011.00591.x
[20]  Dias MP, Granadeiro JP, Catry P (2012) Working the day or the night shift? Foraging schedules of Cory’s shearwaters vary according to marine habitat. Mar Ecol Prog Ser 467: 245–252 doi: 10.3354/meps09966.
[21]  Drazen JC, De Forest LG, Domokos RK (2011) Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies, and the moon. Deep Sea Res II 58: 557–566. doi: 10.1016/j.dsr.2011.03.002
[22]  Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68: 225–252.
[23]  Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys Res - Oceans 105: 19477–19498. doi: 10.1029/2000jc900063
[24]  Elliott KH, Woo KJ, Gaston AJ, Benvenuti S, Dall’Antonia L, et al. (2009) Central-place foraging in an arctic seabird provides evidence for Storer-Ashmole’s Halo. Auk 126: 613–625. doi: 10.1525/auk.2009.08245
[25]  Erikstad KE, Fauchald P, Tveraa T, Steen H (1998) On the cost of reproduction in long-lived birds: the influence of environmental variability. Ecology 79: 1781–1788 doi:10.2307/176796.
[26]  Erikstad KE, Sandvik H, Fauchald P, Tveraa T (2009) Short- and long-term consequences of reproductive decisions: an experimental study in the puffin. Ecology 90: 3197–3208. doi: 10.1890/08-1778.1
[27]  Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. J Appl Ecol 41: 1129–1139. doi: 10.1111/j.0021-8901.2004.00966.x
[28]  Fridolfsson A-K, Ellegren H (1999) A simple and universal method for molecular sexing of non-Ratite birds. J Avian Biol 30: 116–121. doi: 10.2307/3677252
[29]  Furuhashi M, Shimazaki K (1989) Vertical distribution and diet of Stenobrachius nannochir (Myctophidae) in the southern Bering Sea, summer, 1987. Proc Natl Inst Polar Res (NIPR) Symp Polar Biol (National Institute of Polar Research, Tokyo) 2: 94–104.
[30]  Garthe S, Montevecchi WA, Chapdelaine G, Rail J-F, Hedd A (2007) Contrasting foraging tactics by northern gannets (Sula bassana) breeding in different oceanographic domains with different prey fields. Mar Biol 151: 687–694 doi:10.1007/s00227-006-0523-x.
[31]  God? OR, Samuelsen A, Macaulay GJ, Patel R, Hj?llo S, et al.. (2012) Mesoscale eddies are oases for higher trophic marine life. PLoS ONE 7(1):e30161. doi:10.1371/journal.pone.0030161.
[32]  Golet GH, Irons DB, Estes JA (1998) Survival costs of chick rearing in black-legged kittiwakes. J Anim Ecol 67: 827–841. doi: 10.1046/j.1365-2656.1998.00233.x
[33]  González-Solís J, Croxall JP, Afanasyev V (2007) Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons. . Aquatic Conserv: Mar. Freshw. Ecosyst. 17: S22–S36 doi: 10.1002/aqc.911.
[34]  González-Solís J, Shaffer SA (2009) Introduction and synthesis: spatial ecology of seabirds at sea. Mar Ecol Prog Ser 391: 117–120. doi: 10.3354/meps08282
[35]  Goutte A, Angelier F, Welcker J, Moec B, Clément-Chastel C, et al. (2010) Long-term survival effect of corticosterone manipulation in black-legged kittiwakes. Gen Comp Endocrinol 167: 246–251. doi: 10.1016/j.ygcen.2010.03.018
[36]  Grémillet D, Kuntz G, Delbart F, Mellet M, Kato A, et al. (2004) Linking the foraging performance of a marine predator with local prey abundance. Funct Ecol 18: 793–801. doi: 10.1111/j.0269-8463.2004.00914.x
[37]  Harding AMA, Kitaysky AS, Hall ME, Welcker J, Karnovsky NJ, et al. (2009) Flexibility in the parental effort of an Arctic-breeding seabird. Funct. Ecol. 23: 248–358. doi: 10.1111/j.1365-2435.2008.01488.x
[38]  Hatch SA (2013) Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar Ecol Prog Ser 477: 271–284. doi: 10.3354/meps10161
[39]  Haynes TB, Nelson SK, Poulsen F, Padula VM (2011) Spatial distribution and habitat use of marbled murrelets Brachyramphus marmoratus at sea in Port Snettisham, Alaska. Mar Ornithol 39: 151–162.
[40]  Hays C (1986) Effects of the 1982–1983 El Nino on Humboldt Penguin colonies in Peru. Biol Conserv 36: 169–180. doi: 10.1016/0006-3207(86)90005-4
[41]  Hollowed AB, Barbeaux SJ, Cokelet ED, Farley E, Kotwicki S, et al. (2012) Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Res II 65–70: 230–250. doi: 10.1016/j.dsr2.2012.02.008
[42]  Hunt GL, Eppley Z, Schneider D (1986) Reproductive performance of seabirds: the importance of population and colony size. Auk 103: 306–317.
[43]  Hunt GL Jr, Coyle KO, Eisner L, Farley EV, Heintz R, et al.. (2011) Climate impacts on eastern Bering Sea food webs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES J. Mar. Sci. doi:10.1093/icesjms/fsr036.
[44]  Irons DB, Anker-Nilssen T, Gaston AJ, Byrd GV, Falk K, et al. (2008) Magnitude of climate shift determines direction of circumpolar seabird population trends. Glob Change Biol 14: 1455–1463. doi: 10.1111/j.1365-2486.2008.01581.x
[45]  Jahncke J, Vlietstra LS, Decker MB, Hunt GL Jr (2008) Marine bird abundance around the Pribilof Islands: a multi-year comparison. Deep Sea Research Part II 55: 1809–1826. doi: 10.1016/j.dsr2.2008.04.003
[46]  Jodice PGR, Lanctot RB, Gill VA, Roby DD, Hatch SA (2000) Sexing adult black-legged kittiwakes by DNA, behaviour, and morphology. Waterbirds 23: 405–415. doi: 10.2307/1522177
[47]  Karpouzi VS, Watson R, Pauly D (2007) Modelling and mapping resource overlap between seabirds and fisheries on a global scale: a preliminary assessment. Mar Ecol Prog Ser 343: 87–99. doi: 10.3354/meps06860
[48]  Kitaysky AS, Wingfield JC, Piatt JF (1999) Food availability, body condition and physiological stress response in breeding black-legged kittiwakes. Funct Ecol 13: 577–584. doi: 10.1046/j.1365-2435.1999.00352.x
[49]  Kitaysky AS, Piatt JF, Wingfield JC (2007) Stress hormones link food availability and population processes in seabirds. Mar Ecol Prog Ser 352: 245–258. doi: 10.3354/meps07074
[50]  Kitaysky AS, Piatt JF, Hatch SA, Kitaiskaia AV, Benowitz-Fredericks ZM, et al. (2010) Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds. Funct Ecol 24: 625–637. doi: 10.1111/j.1365-2435.2009.01679.x
[51]  Klostermann MR, St. Pierre ML, Romano MD (2013) Biological monitoring at St. George Island, Alaska in 2013. U.S. Fish and Wildl. Serv. Rep., AMNWR 2013/08. Homer, Alaska.
[52]  Kotzerka J, Hatch SA Garthe SE (2010) GPS tracking devices reveal foraging strategies of black-legged kittiwakes. J Ornithol 151: 459–467. doi: 10.1007/s10336-009-0479-y
[53]  Ladd C, Stabeno PJ, O'Hern JE (2012) Observations of a Pribilof eddy. . Deep-Sea Res. I 66: 67–76 doi: –10.1016/j.dsr.2012.04.003, 67–76.
[54]  Lewis S, Sherratt TN, Hamer KC, Wanless S (2001) Evidence of intra-specific competition for food in a pelagic seabird. Nature 412: 816–819. doi: 10.1038/35090566
[55]  Lobel PS, Robisnson AR (1998) Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters. J Plankton Res 10: 1209–1223. doi: 10.1093/plankt/10.6.1209
[56]  MacArthur RH, Pianka ER (1966) On the optimal use of a patchy environment. Am Nat 100: 603–609. doi: 10.1086/282454
[57]  Mizobata K, Saitoh S, Shiomoto A, Miyamura T, Shiga N, et al. (2002) Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001. Prog Ocean 55: 65–75. doi: 10.1016/s0079-6611(02)00070-8
[58]  Mueter FJ, Bond NA, Ianelli JN, Hollowed AB (2011) Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES J Mar Sci 68: 1284–1296. doi: 10.1093/icesjms/fsr022
[59]  Muhling B, Beckley L, Olivar M (2007) Ichthyoplankton assemblage structure in two meso-scale Leeuwin Current eddies, eastern Indian Ocean. Deep Sea Res II 54: 1113–1128. doi: 10.1016/j.dsr2.2006.05.045
[60]  Navarro J, Gonzalez-Solis J (2007) Experimental increase of flying costs in a pelagic seabird: effects on foraging strategies, nutritional state and chick condition. Oecologia 151: 150–160. doi: 10.1007/s00442-006-0559-0
[61]  Navarro J, Votier SC, Aguzzi J, Chiesa JJ, Forero MG, et al. (2013) Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8(4): e62897 doi:10.1371/journal.pone.0062897.
[62]  Nel DC, Lutjeharms JRE, Pakhomov EA, Ansorge IJ, Ryan PG, et al. (2001) Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Mar Ecol Prog Ser 217: 15–26. doi: 10.3354/meps217015
[63]  Nordstrom CA, Battaile BC, Cotté C, Trites AW (2012) Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Sea Res II: doi 10.1016/ j.dsr2.2012.07.010.
[64]  Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR, editors. Analysis of ecological systems. Ohio State University Press, Columbus, Ohio, USA. pp. 154–177.
[65]  Oro D, Furness RW (2002) Influences of food availability and predation on survival of kittiwakes. Ecology 83: 2516–2528. doi: 10.1890/0012-9658(2002)083[2516:iofaap]2.0.co;2
[66]  Paredes R, Harding AM, Irons DB, Roby DD, Suryan RM, et al. (2012) Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar Ecol Prog Ser 471: 253–269 doi: 10.3354/meps10034.
[67]  Reid WV (1987) The cost of reproduction in the glaucous-winged gull. Oecologia 74: 458–467. doi: 10.1007/bf00378945
[68]  Renner HM, Meuter F, Warzybok JA, Drummond BA, Sinclair EH (2012) Patterns of change in diets of seabirds in the Pribilof Islands: relationships with environmental conditions and chick survival. Deep Sea Res II doi: 10.1016/ j.dsr2.2012.02.014.
[69]  Ricklefs RE (1987) Response of adult Leach’s storm-petrels to increased food demand at the nest. Auk 104: 750–756.
[70]  Ricklefs RE, Minot EO (1991). Concluding remarks: parent–offspring interactions in the evolution of avian life histories. In: Bell, Ben D, et al.. Editors. Acta XX Congressus Internationalis Ornithologici pp. 992–997.
[71]  Romero LM, Wikelski M (2001) Corticosterone levels predict survival probabilities of Galapagos marine aguanas during El Ni?o events. . P. Natl. Acad. Sci. 98: 7366–7370. doi: 10.1073/pnas.131091498
[72]  Romero LM, Reed MJ, Wingfield JC (2000) Effects of weather on corticosterone responses in wild free-living passerine birds. Gen. Comp. Endocr. 118: 113–122. doi: 10.1006/gcen.1999.7446
[73]  Sassa C, Kawaguchi K, Oozeki Y, Kubota H, Sugisaki H (2004) Distribution patterns of larval myctophid fishes in the transition region of the western North Pacific. Mar Biol 144: 417–428. doi: 10.1007/s00227-003-1214-5
[74]  Satterthwaite WH, Kitaysky AS, Hatch SA, Piatt JF, Mangel M (2010) Unifying quantitative life history theory and field endocrinology to assess prudent parenthood in a long-lived seabird. Evol Ecol Res 12: 779–792.
[75]  Satterthwaite WH, Kitaysky AS, Mangel M (2012) Linking climate variability, productivity and stress to demography in a long-lived seabird. Mar Ecol Prog Ser 454: 221–235. doi: 10.3354/meps09539
[76]  Schabetsberger R, Brodeur RD, Ciannelli L, Napp JM, Swartzman GL (2000) Diel vertical migration and interaction of zooplankton and juvenile walleye pollock (Theragra chalcogramma) at a frontal region near the Pribilof Islands, Bering Sea. ICES J Mar Sci 57: 1283–1295. doi: 10.1006/jmsc.2000.0814
[77]  Schoener TW (1983) Field experiments on interspecific competition. American Naturalist 122: 240–285. doi: 10.1086/284133
[78]  Schumacher JD, Stabeno PJ (1994) Ubiquitous eddies of the eastern Bering Sea and their coincidence with concentrations of larval pollock. Fish Oceanogr 3: 182–190. doi: 10.1111/j.1365-2419.1994.tb00095.x
[79]  Sigler MF, Kuletz KJ, Ressler PH, Friday NA, Wilson CD, et al.. (2012) Marine predators and persistent prey in the southeast Bering Sea. Deep Sea Res II doi:10.1016/j.dsr2.2012.02.017.
[80]  Sinclair EH, Vlietstra LS, Johnson DS, Zeppelin TK, Byrd GV, et al. (2008) Patterns in prey use among fur seals and seabirds in the Pribilof Islands. Deep Sea Res II 55: 1897–1918. doi: 10.1016/j.dsr2.2008.04.031
[81]  Stabeno P, Moore S, Napp J, Sigler M, Zerbini A (2012) Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Res II 65–70: 31–45. doi: 10.1016/j.dsr2.2012.02.020
[82]  Sterling JT (2009) Northern fur seal foraging behaviors, food webs, and interactions with oceanographic features in the eastern Bering Sea. Ph.D. Dissertation, University of Washington, WA.
[83]  Suryan RM, DB Irons, Benson J (2000) Prey switching and variable foraging strategies of black-legged kittiwakes and the effect on reproductive success. Condor 102: 375–385. doi: 10.1650/0010-5422(2000)102[0374:psavfs]2.0.co;2
[84]  Suryan RM, Irons DB, Kaufman M, Jodice PGR, Roby DD, et al. (2002) Short-term fluctuations in forage fish availability and the effect on prey selection and brood-rearing in the black-legged kittiwake. Mar Ecol Prog Ser 236: 273–287. doi: 10.3354/meps236273
[85]  Suryan RM, Santora JA, Sydeman WJ (2012) New approach for using remotely sensed chlorophyll a to identify seabird hotspots. Mar Ecol Prog Ser 451: 213–225. doi: 10.3354/meps09597
[86]  Thomson G, Romano MD (2013) Biological monitoring at St. Paul Island, Alaska in 2013. U.S. Fish and Wildl. Serv. Rep., AMNWR 2013/10. Homer, Alaska.
[87]  Traynor JJ (1996) Target-strength measurements of walleye pollock (Theragra chalcogramma) and Pacific whiting (Merluccius productus) ICES J Mar Sci. 53: 253–258. doi: 10.1006/jmsc.1996.0031
[88]  Vacquié-Garcia J, Royer F, Dragon A-C, Viviant M, Bailleul F, et al. (2012) Foraging in the darkness of the southern ocean: influence of bioluminescence on a deep diving predator. PLoS ONE 7(8): e43565 doi:10.1371/journal.pone.0043565.
[89]  Wakefield ED, Bodey TW, Bearhop S, Blackburn J, Colhoun K, et al.. (2013) Space partitioning without territoriality in Gannets. Science 341 : 68-70. doi:10.1126/science.1236077.
[90]  Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A (1999) Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fish Oceanogr 8: 115–127. doi: 10.1046/j.1365-2419.1999.00103.x
[91]  Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res II 54: 211–223. doi: 10.1016/j.dsr2.2006.11.013
[92]  Weimerskirch H, Bertrand S, Silva J, Bost C, Peraltilla S (2012) Foraging in Guanay cormorant and Peruvian booby, the major guano-producing seabirds in the Humboldt Current System. Mar Ecol Prog Ser 458: 231–245. doi: 10.3354/meps09752
[93]  Whitman L (2010) Variation in the energy density of forage fishes and invertebrates from the Southeastern Bering Sea. Ph.D Dissertation. Oregon State University. Corvallis, OR
[94]  Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, et al. (1998) Ecological basis of hormone-behavior interactions: The “Emergency life history stage”. Am. Zool. 38: 191–206. doi: 10.1093/icb/38.1.191
[95]  Wingfield JC, Kitaysky AS (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormones? Integ Comp Biol 42: 600–609. doi: 10.1093/icb/42.3.600
[96]  Zainuddin M, Kiyofuji H, Saitoh K, Saitoh S (2006) Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep Sea Res II 53: 419–431. doi: 10.1016/j.dsr2.2006.01.007
[97]  Zavalaga CB, Benvenuti S, Dall’Antonia L, Emslie SD (2007) Diving behavior of blue-footed boobies Sula nebouxii in northern Peru in relation to sex, body size and prey type. Mar Ecol Prog Ser 336: 291–303 doi:10.3354/meps336291.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133