To evaluate the effect of airborne particulate matter 2.5 (PM2.5) in winter on airway inflammation, water-soluble supernatant (Sup) and water-insoluble precipitate (Pre) in PM2.5 were inoculated in NC/Nga mice with high sensitivity to mite allergens. Sup with aluminum oxide was injected intraperitoneally for sensitization. Five days later, Sup, Pre or both Sup and Pre were inoculated via the nasal route five times for more sensitization and a challenge inoculation on the 11th day in NC/Nga mice. On the 12th day, mice were examined for airway hyperresponsiveness (AHR), BALF cell count and IL-1β concentration, mRNA expression of Th1 and Th2 cytokines, chemokines such as eotaxin 1 and eotaxin 2, inflammasomal complex molecules such as IL-1β, caspase 1 and the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) in lung tissue as well as histopathology. The synergistic effect of Sup and Pre was observed in terms of increases in AHR, BALF cells, the mRNA expression of IL-13, eotaxin1 and IL-1β, and the IL-1β concentration in BALF. Intracellular deposits of insoluble particulates were observed in macrophages around inflammatory granulation of the mouse group treated with Sup and Pre. These results suggest that PM2.5 can induce airway hyperresponsiveness in mice with genetically high sensitivity to mite allergens by an inflammasome-associated mechanism and synergistic action of insoluble particulates and soluble components.
References
[1]
Dockery DW, Pope III CA, Xu X, Spengler JD, Ware JH, et al. (1993) An association between air pollution and mortality in six U.S.cities. N Engl J Med 329: 1753–1759. doi: 10.1056/nejm199312093292401
[2]
Schwartz J (1994) Air pollution and daily mortality: a review and meta analysis. Environ Res 64: 36–52. doi: 10.1006/enrs.1994.1005
[3]
Pope III CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, et al. (1995) Particulate air pollution as a predictor of mortality in a prespective study of U.S. adults. Am J Respir Crit Care Med 151: 669–674. doi: 10.1164/ajrccm.151.3.7881654
[4]
Schwarze PE, Ovrevik J, L?g M, Refsnes M, Nafstad P, et al. (2006) Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol 25: 559–579. doi: 10.1177/096032706072520
[5]
Fujimaki H, Saneyoshi K, Shiraishi F, Imai T, Endo T (1997) Inhalation of diesel exhaust enhances antigen-specific IgE antibody production in mice. Toxicology 116: 227–233. doi: 10.1016/s0300-483x(96)03539-1
[6]
Ormstad H, Gaarder PI, Johansen BV, L?vik M (1998) Airborne house dust elicits a local lymph node reaction and has an adjuvant effect on specific IgE production in the mouse. Toxicology 129: 227–236. doi: 10.1016/s0300-483x(98)00079-1
[7]
Pope III CA (1989) Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health 79: 623–628. doi: 10.2105/ajph.79.5.623
[8]
Costa DL, Dreher KL (1997) Bioavailability transition metals in particulate matter mediated cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect 105: 1053–1060. doi: 10.1289/ehp.97105s51053
[9]
Gavett SH, Haykal-Coates N, Copeland LB, Heinrich J, Gilmour MI (2003) Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ Health Perspect 111: 1471–1477. doi: 10.1289/ehp.6300
[10]
Oberd?rster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health perspect 102: 173–179. doi: 10.1289/ehp.94102s5173
[11]
Takano H, Yoshikawa T, Ichinose T, Miyabara Y, Imaoka K, et al. (1997) Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am J Respir Crit Care Med 156: 36–42. doi: 10.1164/ajrccm.156.1.9610054
[12]
Gavett SH, Madison SL, Dreher KL, Winsett DW, McGee JK, et al. (1997) Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res 72: 162–172. doi: 10.1006/enrs.1997.3732
[13]
Walters DM, Breysse PN, Wills-Karp M (2001) Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice. Am J Respir Crit Care Med 164: 1438–1443. doi: 10.1164/ajrccm.164.8.2007121
[14]
Ogino K, Takahashi N, Kubo M, Takeuchi A, Nakagiri M, et al.. (2012) Inflammatory airway responses by nasal inoculation of suspended particles matter in NC/Nga mice. Environ Toxicol (doi: 10.1002/tox.21791).
Shibamori M, Ogino K, Kambayashi Y, Ishiyama H (2006) Intranasal mite allergen induces allergic asthma-like responses in NC/Nga mice. Life Sci 78: 987–994. doi: 10.1016/j.lfs.2005.06.020
[17]
Takemoto K, Ogino K, Shibamori M, Gondo T, Hitomi Y, et al. (2007) Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma. Am J Physiol Lung Cell Mol Physiol 293: L1419–L1426. doi: 10.1152/ajplung.00418.2006
[18]
Takahashi N, Ogino K, Takemoto K, Hamanishi S, Wang DH, et al. (2010) Direct inhibition of arginase attenuated airway allergic reactions and inflammation in a Dermatophagoides farinae-induced NC/Nga mouse model. Am J Physiol Lung Cell Mol Physiol 299: L17–L24. doi: 10.1152/ajplung.00216.2009
[19]
Suto H, Matsuda H, Mitsuishi K, Hira K, Uchida T, et al. (1999) NC/Nga mice: a mouse model for atopic dermatitis. Int Arch Allergy Immunol 120: 70–75. doi: 10.1159/000053599
[20]
Sasakawa T, Higashi Y, Sakuma S, Hirayama Y, Sasakawa Y, et al. (2001) Atopic dermatitis-like skin lesions induced by topical application of mite antigens in NC/Nga mice. Int Arch of Allergy Immunol 126: 239–247. doi: 10.1159/000049520
[21]
Kubo M, Kambayashi Y, Takemoto K, Okuda J, Muto M, et al. (2005) Reactive nitrogen species formation in eosinophils and imbalance in nitric oxide metabolism are involved in atopic dermatitis-like skin lesions in NC/Nga mice. Free Radic Res 39: 719–727. doi: 10.1080/10715760500139260
[22]
Ganz M, Csak T, Nath B, Szabo G (2011) Lipopolysaccharide induces and activates the Nalp3 inflammasome in the liver. World J Gastroenterol 17: 4772–4778. doi: 10.3748/wjg.v17.i43.4772
[23]
Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, et al. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestosis and silica. Science 320: 674–677. doi: 10.1126/science.1156995
[24]
Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232. doi: 10.1038/nature04515
[25]
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschoop J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241. doi: 10.1038/nature04516
[26]
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774. doi: 10.1038/356768a0
[27]
Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, et al. (2013) Infllammasome: sensors of metabolic stresses for vascular inflammation. Front Biosci 18: 638–649.
[28]
Bengalli R, Molteni E, Longhin E, Refsnes M, Camatini M, et al.. (2013) Release of IL-1βtriggered by Milan summer PM10: molecular pathway involved in the cytokine release. BioMed Res Int (doi: 10.1155/2013/158093).
[29]
Hirota JA, Hirota SA, Warner AM, Stefanowicz D, Shaheen F, et al. (2012) The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particular matter. J Allergy Clin Immunol 129: 1116–1125. doi: 10.1016/j.jaci.2011.11.033
[30]
Tran HB, Lewis MD, Tan LW, Lester SE, Baker LM, et al.. (2012) Immunolocalization of NLRP3 inflammasome in normal murine airway epithelium and changes following induction of ovalbumin-induced airway inflammation. J Allergy (doi: 10.1155/2012/819176).
[31]
Nagai H, Yamaguchi S, Inagaki N, Tsuruoka N, Hitoshi Y, et al. (1993) Effect of anti-IL-5 monoclonal antibody on allergic bronchial eosinophilia and airway hyperresponsiveness in mice. Life Sci 53: PL243–PL247. doi: 10.1016/0024-3205(93)90545-e
[32]
Cui W, Taub DD, Gardner K (2007) qPrimerDepot: a primer database for quantitative real time PCR. Nucleic acids res 35: D805–809. doi: 10.1093/nar/gkl767
[33]
Wang X, Spandidos A, Wang H, Seed B (2012) PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic acids res 40: D1144–1149. doi: 10.1093/nar/gkr1013
Platts-Mills TA, Carter MC (1997) Asthma and indoor exposure to allergens. N Eng J Med 336: 1382–1384. doi: 10.1056/nejm199705083361909
[36]
Ormstad H (2000) Suspended particulate matter in indoor air: adjuvants and allergen carriers. Toxicology 152: 53–68. doi: 10.1016/s0300-483x(00)00292-4
[37]
Inoue K, Takano H, Yamagisawa R, Ichinose T, Shimada A, et al. (2005) Pulmonary exposure to diesel exhast particles induces airway inflammation and cytokine expression in NC/Nga mice. Arch Toxicol 79: 595–599. doi: 10.1007/s00204-005-0668-2
[38]
Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, et al. (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305: 3135–3145. doi: 10.1126/science.1099472
[39]
Schmitz N, Kurrer M, Kopf M (2003) The IL-1 receptpr 1 is critical for Th2 cell type airway immune reponses in a mild but not in a more severe asthma model. Eur J Immunol 33: 991–1000. doi: 10.1002/eji.200323801
[40]
Nakae S, Komiyama Y, Yokoyama H, Nambu A, Umeda M, et al. (2003) IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 15: 483–490. doi: 10.1093/intimm/dxg054
[41]
Rodríguez D, Keller AC, Faquim-Mauro EL, de Macedo MS, Cunha FQ, et al. (2003) Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol 171: 1001–1008. doi: 10.4049/jimmunol.171.2.1001
[42]
González-Benítez JF, Juárez-Verdayes MA, Rodríguez-Martínez S, Cancino-Diaz ME, García-Vázquez F et al.. (2008) The NALP3/cryopyrin-inflamasome complex is expressed in LPS-induced ocular inflammation. Mediators Inflamm (doi: 10.1155/2008/614345).
[43]
Le J, Lin JX, Henriksen-Destefano D, Vilcek J (1986) Bacterial lipopolysaccharide-induced interferon-gamma production: roles of interleukin 1 and interleukin 2. J Immunol 136: 4525–4530.