全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Membrane Lipid Phase Transition Behavior of Oocytes from Three Gorgonian Corals in Relation to Chilling Injury

DOI: 10.1371/journal.pone.0092812

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lipid phase transition (LPT) from the fluid liquid crystalline phase to the more rigid gel structure phase that occurs upon exposure to low temperatures can affect physical structure and function of cellular membranes. This study set out to investigate the membrane phase behavior of oocytes of three gorgonian corals; Junceela fragilis, J. juncea and Ellisella robusta,at different developmental stages after exposure to reduced temperatures. Oocytes were chilled to 5°C for 48, 96 or 144 h, and the LPT temperature (LPTT) was determined with Fourier Transform Infrared (FTIR) spectroscopy. The J. fragilis oocytes had a higher LPTT (~23.0–23.7°C) than those of J. juncea and E. robusta oocytes (approximately 18.3–20.3°C). Upon chilling for 96 h at 5°C, the LPTTs of J. juncea and E. robusta oocytes in the early (18.0±1.0 and 18.3±0.6°C, respectively) and late (17.3±0.6 and 17.7±1.2°C, respectively) stages were significantly lower than those of J. fragilis oocytes (20.3±2.1 and 19.3±1.5°C for the early and late stages, respectively). The LPTTs of early stage gorgonian oocytes was significantly lower than those of late stage oocytes. These results suggest that the LPT of three gorgonian oocytes at different developmental stages may have been influenced by the phospholipid composition of their plasma membranes, which could have implications for their low temperature resistance.

References

[1]  Lin C, Zhang T, Kuo FW, Tsai S (2011) Studies on oocytes chilling sensitivity in the context of ATP response of two gorgonian coral species (J. juncea and J. fragilis). Cryo Lett 32: 141–147.
[2]  Lin C, Tsai S (2012) The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology 77: 1257–1261. doi: 10.1016/j.theriogenology.2011.09.021
[3]  Albertini DF (1992) Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation. Mutat Res 296: 57–58. doi: 10.1016/0165-1110(92)90032-5
[4]  Albertini DF, Eppig JJ (1995) Unusual cytoskeletal chromatin configurations in mouse oocytes that are atypical in meiotic progression. Dev Genet 16: 13–19. doi: 10.1002/dvg.1020160105
[5]  Bou G, Liu LQ, Zheng Z, Tian JT, Kong QR, et al. (2009) Effect of chilling on porcine germinal vesicle stage oocytes at the subcellular level. Cryobiology 59: 54–58. doi: 10.1016/j.cryobiol.2009.04.005
[6]  Wu B, Tong J, Leibo SP (1999) Effect of cooling germinal vesicle- stage bovine oocytes on meiotic spindle formation following in vitro maturation. Mol Reprod Dev 54: 388–395. doi: 10.1002/(sici)1098-2795(199912)54:4<388::aid-mrd9>3.3.co;2-z
[7]  Zenes MT, Bielecki R, Casper RF, Leibo SP (2001) Effects of chilling to 0 degrees C on the morphology of meiotic spindles in human metaphase II oocyte. Fertil Steril 75: 769–777.
[8]  Songsasen N, Yu IJ, Ratterree MS, VandeVoort CA, Leibo SP (2002) Effect of chilling on the organization of tubulin and chromosomes in rhesus monkey oocytes. Fertil Sterill 77: 818–825. doi: 10.1016/s0015-0282(01)03240-x
[9]  Sathananthan AH, Kirby C, Trounson A, Philipators D, Shaw J (1992) The effects of cooling mouse oocytes. J Assist Reprod Gent 9: 139–148. doi: 10.1007/bf01203754
[10]  Arav A, Zeron Y, Leslie SB, Behboodi E, Anderson GB, et al. (1996) Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33: 589–599. doi: 10.1006/cryo.1996.0062
[11]  Arav A, Pearl M, Zeron Y (2000) Does lipid explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocyte? Cry Lett 21: 179–186.
[12]  Ghetler T, Yavin S, Shalgi R, Arav A (2005) The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum Reprod 20: 3385–9. doi: 10.1093/humrep/dei236
[13]  Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, et al. (1993) Cold shock damage is due to lipid phase transition in cell membranes: a demonstration using sperm as a model. J Exp Zool 265: 432–509. doi: 10.1002/jez.1402650413
[14]  Lin C, Han CC, Tsai S (2013) Effect of thermal injury on embryos of banded coral shrimp (Stenopus hispidus) under hypothermal conditions. Cryobiology 66: 3–7. doi: 10.1016/j.cryobiol.2012.05.005
[15]  Zeron Y, Sklan D, Arav A (2002a) Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol Reprod Dev 61: 271–278. doi: 10.1002/mrd.1156
[16]  Peral M, Arav A (2000) Chilling sensitivity in zebra fish (Brachydanio rerio) oocytes is related to lipid phase transition. Cryo Lett 21: 171–178.
[17]  Quinn PJ (1985) A lipid-phase separation model of low temperature damage to biological membranes. Cryobiology 22: 128–146. doi: 10.1016/0011-2240(85)90167-1
[18]  Lin C, Wang LH, Fan TY, Kuo FW (2012) Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. PLoS ONE 7(7), e38689. doi: 10.1371/journal.- pone.0038689.
[19]  White IG (1993) Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev 5: 639–658. doi: 10.1071/rd9930639
[20]  Lin C, Wang LH, Meng PJ, Chen CS, Tsai S (2013) Lipid content and composition of oocytes from five coral species: potential implications for future cryopreservation efforts. PLoS ONE 8(2), e57823. doi:10.1371/journal.pone.0057823.
[21]  Watson PF, Morris GJ (1987) Cold shock injury in animal cells. Symp Soc Exp Biol 41: 311–340.
[22]  Tsai S, Rawson DM, Zhang T (2009) Studies on chilling sensitivity of early stage zebrafish (Danio rerio) ovarian follicles. Cryobiology 58: 279–286. doi: 10.1016/j.cryobiol.2009.02.002
[23]  Crowe JH, Hoekstra FA, Crowe LM, Anchordoguy TJ, Drobnis E (1989) lipid phase transitions measured in intact cell with Fourier transform infrared spectroscopy. Cryobiology 27: 76–84. doi: 10.1016/0011-2240(89)90035-7
[24]  Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan K, et al. (2001) Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 121: 447–454. doi: 10.1530/rep.0.1210447
[25]  Zeron Y, Tomczak M, Crowe J, Arav A (2002b) The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: implications for reducing chilling sensitivity. Cryobiology 45: 143–152. doi: 10.1016/s0011-2240(02)00123-2
[26]  Kim JY, Kinoshita M, Ohnishi M, Fukui Y (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122: 131–138. doi: 10.1530/rep.0.1220131
[27]  Homa ST, Racowsky C, McGaughey RW (1986) Lipid analysis of immature pig oocytes. J Reprod Fertil 77: 425–434. doi: 10.1530/jrf.0.0770425
[28]  Coull GD, Speake BK, Staines ME, Boradbent PJ, McEvoy TG (1998) Lipid and fatty acid composition of zona-intact sheep oocytes. Theriogenology 49: 179. doi: 10.1016/s0093-691x(98)90532-5
[29]  Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145: 621–631. doi: 10.1007/s00227-004-1337-3
[30]  Thompson JG (1996) Defining the requirements for bovine embryos culture. Theriogenology 45: 27–40. doi: 10.1016/0093-691x(95)00352-9
[31]  Imbs A, Demidkova D, Latypov Y, Pham L (2007) Application of fatty acids for chemotaxonomy of reefbuilding corals. Lipids 42: 1035–1046. doi: 10.1007/s11745-007-3109-6
[32]  Treignier C, Grover R, Ferrier-pages C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53: 2702–2710. doi: 10.4319/lo.2008.53.6.2702
[33]  Ulrich K (1994) Comparative animal biochemistry. Springer-Verlag.
[34]  Sanina NM, Kostetsky EY (2001) Seasonal changes in thermotropic behavior of phosphatidylcholine and phohphatidylethanolamine in different organs of the ascidian Halocynthia aurantium. Comp Biochem Physiol B 128: 295–305. doi: 10.1016/s1096-4959(00)00328-6
[35]  Sanina NM, Kostetsky EY (2002) Thermotropic hehavior of major phospholipids from marine invertebrates: changes with warm-acclimation and seasonal acclimatization. Comp Biochem Physiol B 133: 143–153. doi: 10.1016/s1096-4959(02)00092-1
[36]  Amna RR, Park JE (1994) Effects of cooling and rewarming on the meiotic spindle and chromosomes of in vitro-matured bovine oocytes. Biol Reprod 50: 103–110. doi: 10.1095/biolreprod50.1.103
[37]  Sathananthan AH, Trounson A, Freeman L, Brady T (1988) The effects of cooling human oocytes. Hum Reprod 3: 968–977.
[38]  Pielak RM, Gaysinskaya VA, Cohen WD (2003) Cytoskeletal events preceding polar body formation in activated Spisula eggs. Biol Bull 205: 192–193. doi: 10.2307/1543247
[39]  Pielak RM, Gaysinskaya VA, Cohen WD (2004) Formation and function of polar body contractile ring in Spisula. Dev Biol 269: 421–432. doi: 10.1016/j.ydbio.2004.01.033
[40]  Pang Z, Chang Y, Sun H, Yu J (2010) Role of animal pole protuberance and microtubules during meiosis in sea cucumber Apostichopus japonicas oocytes. Chin J Oceanol Limnol 28: 533–541. doi: 10.1007/s00343-010-9009-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133