[1] | Oakley DA, Halligan PW (2013) Hypnotic suggestion: opportunities for cognitive neuroscience. Nat Rev Neurosci 14: 565–576. doi: 10.1038/nrn3538
|
[2] | Kirsch I, Braffman W (2001) Imaginative suggestibility and hypnotizability. Current directions in psychological science 10: 57–61. doi: 10.1111/1467-8721.00115
|
[3] | Raz A (2008) Genetics and neuroimaging of attention and hypnotizability may elucidate placebo. Int J Clin Exp Hypn 56: 99–116. doi: 10.1080/00207140701506482
|
[4] | Piccione C, Hilgard ER, Zimbardo PG (1989) On the degree of stability of measured hypnotizability over a 25-year period. J Pers Soc Psychol 56: 289–295. doi: 10.1037/0022-3514.56.2.289
|
[5] | Carli G, Huber A, Santarcangelo E (2008) Hypnotizability and chronic pain: an ambiguous connection. Contemporary Hypnosis 25: 65–77. doi: 10.1002/ch.356
|
[6] | Carli G, Manzoni D, Santarcangelo EL (2008) Hypnotizability-related integration of perception and action. Cogn Neuropsychol 25: 1065–1076. doi: 10.1080/02643290801913712
|
[7] | De Pascalis V, Cacace I, Massicolle F (2008) Focused analgesia in waking and hypnosis: effects on pain, memory, and somatosensory event-related potentials. Pain 134: 197–208. doi: 10.1016/j.pain.2007.09.005
|
[8] | McGeown WJ, Venneri A, Kirsch I, Nocetti L, Roberts K, et al. (2012) Suggested visual hallucination without hypnosis enhances activity in visual areas of the brain. Conscious Cogn 21: 100–116. doi: 10.1016/j.concog.2011.10.015
|
[9] | Egner T, Jamieson G, Gruzelier J (2005) Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. Neuroimage 27: 969–978. doi: 10.1016/j.neuroimage.2005.05.002
|
[10] | Raz A, Fan J, Posner MI (2005) Hypnotic suggestion reduces conflict in the human brain. Proc Natl Acad Sci U S A 102: 9978–9983. doi: 10.1073/pnas.0503064102
|
[11] | McGeown WJ, Mazzoni G, Venneri A, Kirsch I (2009) Hypnotic induction decreases anterior default mode activity. Conscious Cogn 18: 848–855. doi: 10.1016/j.concog.2009.09.001
|
[12] | Terhune DB, Cardena E, Lindgren M (2011) Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility. Psychophysiology 48: 1444–1447. doi: 10.1111/j.1469-8986.2011.01211.x
|
[13] | Hoeft F, Gabrieli JD, Whitfield-Gabrieli S, Haas BW, Bammer R, et al. (2012) Functional brain basis of hypnotizability. Arch Gen Psychiatry 69: 1064–1072. doi: 10.1001/archgenpsychiatry.2011.2190
|
[14] | Dienes Z, Hutton S (2013) Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility. Cortex 49: 386–392. doi: 10.1016/j.cortex.2012.07.009
|
[15] | Pochon JB, Riis J, Sanfey AG, Nystrom LE, Cohen JD (2008) Functional imaging of decision conflict. J Neurosci 28: 3468–3473. doi: 10.1523/jneurosci.4195-07.2008
|
[16] | Preacher KJ, Rucker DD, MacCallum RC, Nicewander WA (2005) Use of the extreme groups approach: a critical reexamination and new recommendations. Psychol Methods 10: 178–192. doi: 10.1037/1082-989x.10.2.178
|
[17] | Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. (2009) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040–13045. doi: 10.1073/pnas.0905267106
|
[18] | Glisky ML, Tataryn DJ, Kihlstrom JF (1995) Hypnotizability and mental imagery. Int J Clin Exp Hypn 43: 34–54. doi: 10.1080/00207149508409374
|
[19] | Lynn SJ, Rhue JW (1986) The fantasy-prone person: hypnosis, imagination, and creativity. J Pers Soc Psychol 51: 404–408. doi: 10.1037//0022-3514.51.2.404
|
[20] | Green JP, Lynn SJ (2011) Hypnotic responsiveness: expectancy, attitudes, fantasy proneness, absorption, and gender. Int J Clin Exp Hypn 59: 103–121. doi: 10.1080/00207144.2011.522914
|
[21] | Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[22] | Pedrabissi L, Santinello M (1989) Inventario per l'ansia di "stato" e di "tratto": Nuova versione Italiana dello STAI. Forma Y: Manuale. Florence: Organizzazioni Speciali.
|
[23] | Tellegen A, Atkinson G (1974) Openness to absorbing and self-altering experiences ("absorption"), a trait related to hypnotic susceptibility. J Abnorm Psychol 83: 268–277.
|
[24] | Weitzenhoffer AM, Hilgard ER (1959) Stanford Hypnotic Susceptibility Scale: Forms A and B. Palo Alto, CA: Consulting Psychologists Press.
|
[25] | Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38: 95–113. doi: 10.1016/j.neuroimage.2007.07.007
|
[26] | Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162–173. doi: 10.1006/cbmr.1996.0014
|
[27] | Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162–167. doi: 10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
|
[28] | Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52: 571–582. doi: 10.1016/j.neuroimage.2010.04.246
|
[29] | Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, et al. (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 106: 7209–7214. doi: 10.1073/pnas.0811879106
|
[30] | Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, et al. (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636–647. doi: 10.1002/mrm.1910330508
|
[31] | Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, et al. (2013) The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders. Front Hum Neurosci 7: 356. doi: 10.3389/fnhum.2013.00356
|
[32] | Draganski B, May A (2008) Training-induced structural changes in the adult human brain. Behav Brain Res 192: 137–142. doi: 10.1016/j.bbr.2008.02.015
|
[33] | Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and presupplementary motor areas. Nat Rev Neurosci 9: 856–869. doi: 10.1038/nrn2478
|
[34] | Menzocchi M, Paoletti G, Huber A, Carli G, Cavallaro FI, et al. (2010) Hypnotizability and sensorimotor integration: an Italian Space Agency project. Int J Clin Exp Hypn 58: 122–135. doi: 10.1080/00207140903316169
|
[35] | Castellani E, Carli G, Santarcangelo EL (2011) Visual identification of haptically explored objects in high and low hypnotizable subjects. Int J Clin Exp Hypn 59: 250–265. doi: 10.1080/00207144.2011.546269
|
[36] | Craig AD (2010) The sentient self. Brain Struct Funct 214: 563–577. doi: 10.1007/s00429-010-0248-y
|
[37] | Wylie KP, Tregellas JR (2010) The role of the insula in schizophrenia. Schizophr Res 123: 93–104. doi: 10.1016/j.schres.2010.08.027
|
[38] | Garcia-Larrea L (2012) The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 42: 299–313. doi: 10.1016/j.neucli.2012.06.001
|
[39] | Aguilar EJ, Sanjuan J, Garcia-Marti G, Lull JJ, Robles M (2008) MR and genetics in schizophrenia: focus on auditory hallucinations. Eur J Radiol 67: 434–439. doi: 10.1016/j.ejrad.2008.02.046
|
[40] | Gruzelier J (2010) New and rediscovered insights about the nature of hypnotisability: exceptional ability and vulnerability. Contemporary Hypnosis 28: 116–135.
|
[41] | Horton JE, Crawford HJ, Harrington G, Downs JH III (2004) Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 127: 1741–1747. doi: 10.1093/brain/awh196
|
[42] | Whittingstall K, Bernier M, Houde JC, Fortin D, Descoteaux M (2013) Structural network underlying visuospatial imagery in humans. Cortex.
|
[43] | Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1: 59–65.
|
[44] | Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100: 3328–3342. doi: 10.1152/jn.90355.2008
|
[45] | Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58: 306–324. doi: 10.1016/j.neuron.2008.04.017
|
[46] | Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129: 564–583. doi: 10.1093/brain/awl004
|
[47] | Maquet P, Faymonville ME, Degueldre C, DelFiore G, Franck G, et al. (1999) Functional neuroanatomy of hypnotic state. Biol Psychiatry 45: 327–333. doi: 10.1016/s0006-3223(97)00546-5
|
[48] | Pyka M, Burgmer M, Lenzen T, Pioch R, Dannlowski U, et al. (2011) Brain correlates of hypnotic paralysis-a resting-state fMRI study. Neuroimage 56: 2173–2182. doi: 10.1016/j.neuroimage.2011.03.078
|
[49] | Huber A, Lui F, Porro CA (2013) Hypnotic susceptibility modulates brain activity related to experimental placebo analgesia. Pain 154: 1509–1518. doi: 10.1016/j.pain.2013.03.031
|
[50] | De Pascalis V, Bellusci A, Russo PM (2000) Italian norms for the Stanford Hypnotic Susceptibility Scale, Form C. Int J Clin Exp Hypn. 48: 315–323. doi: 10.1080/00207140008415249
|
[51] | Woody EZ, Barnier AJ, McConkey KM (2005) Multiple hypnotizabilities: differentiating the building blocks of hypnotic response. Psychol Assess 17: 200–211. doi: 10.1037/1040-3590.17.2.200
|
[52] | Molinari E, Baraldi P, Campanella M, Duzzi D, Nocetti L, et al. (2013) Human parietofrontal networks related to action observation detected at rest. Cereb Cortex 23: 178–186. doi: 10.1093/cercor/bhr393
|