全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Structural and Functional Cerebral Correlates of Hypnotic Suggestibility

DOI: 10.1371/journal.pone.0093187

Full-Text   Cite this paper   Add to My Lib

Abstract:

Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

References

[1]  Oakley DA, Halligan PW (2013) Hypnotic suggestion: opportunities for cognitive neuroscience. Nat Rev Neurosci 14: 565–576. doi: 10.1038/nrn3538
[2]  Kirsch I, Braffman W (2001) Imaginative suggestibility and hypnotizability. Current directions in psychological science 10: 57–61. doi: 10.1111/1467-8721.00115
[3]  Raz A (2008) Genetics and neuroimaging of attention and hypnotizability may elucidate placebo. Int J Clin Exp Hypn 56: 99–116. doi: 10.1080/00207140701506482
[4]  Piccione C, Hilgard ER, Zimbardo PG (1989) On the degree of stability of measured hypnotizability over a 25-year period. J Pers Soc Psychol 56: 289–295. doi: 10.1037/0022-3514.56.2.289
[5]  Carli G, Huber A, Santarcangelo E (2008) Hypnotizability and chronic pain: an ambiguous connection. Contemporary Hypnosis 25: 65–77. doi: 10.1002/ch.356
[6]  Carli G, Manzoni D, Santarcangelo EL (2008) Hypnotizability-related integration of perception and action. Cogn Neuropsychol 25: 1065–1076. doi: 10.1080/02643290801913712
[7]  De Pascalis V, Cacace I, Massicolle F (2008) Focused analgesia in waking and hypnosis: effects on pain, memory, and somatosensory event-related potentials. Pain 134: 197–208. doi: 10.1016/j.pain.2007.09.005
[8]  McGeown WJ, Venneri A, Kirsch I, Nocetti L, Roberts K, et al. (2012) Suggested visual hallucination without hypnosis enhances activity in visual areas of the brain. Conscious Cogn 21: 100–116. doi: 10.1016/j.concog.2011.10.015
[9]  Egner T, Jamieson G, Gruzelier J (2005) Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. Neuroimage 27: 969–978. doi: 10.1016/j.neuroimage.2005.05.002
[10]  Raz A, Fan J, Posner MI (2005) Hypnotic suggestion reduces conflict in the human brain. Proc Natl Acad Sci U S A 102: 9978–9983. doi: 10.1073/pnas.0503064102
[11]  McGeown WJ, Mazzoni G, Venneri A, Kirsch I (2009) Hypnotic induction decreases anterior default mode activity. Conscious Cogn 18: 848–855. doi: 10.1016/j.concog.2009.09.001
[12]  Terhune DB, Cardena E, Lindgren M (2011) Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility. Psychophysiology 48: 1444–1447. doi: 10.1111/j.1469-8986.2011.01211.x
[13]  Hoeft F, Gabrieli JD, Whitfield-Gabrieli S, Haas BW, Bammer R, et al. (2012) Functional brain basis of hypnotizability. Arch Gen Psychiatry 69: 1064–1072. doi: 10.1001/archgenpsychiatry.2011.2190
[14]  Dienes Z, Hutton S (2013) Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility. Cortex 49: 386–392. doi: 10.1016/j.cortex.2012.07.009
[15]  Pochon JB, Riis J, Sanfey AG, Nystrom LE, Cohen JD (2008) Functional imaging of decision conflict. J Neurosci 28: 3468–3473. doi: 10.1523/jneurosci.4195-07.2008
[16]  Preacher KJ, Rucker DD, MacCallum RC, Nicewander WA (2005) Use of the extreme groups approach: a critical reexamination and new recommendations. Psychol Methods 10: 178–192. doi: 10.1037/1082-989x.10.2.178
[17]  Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. (2009) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040–13045. doi: 10.1073/pnas.0905267106
[18]  Glisky ML, Tataryn DJ, Kihlstrom JF (1995) Hypnotizability and mental imagery. Int J Clin Exp Hypn 43: 34–54. doi: 10.1080/00207149508409374
[19]  Lynn SJ, Rhue JW (1986) The fantasy-prone person: hypnosis, imagination, and creativity. J Pers Soc Psychol 51: 404–408. doi: 10.1037//0022-3514.51.2.404
[20]  Green JP, Lynn SJ (2011) Hypnotic responsiveness: expectancy, attitudes, fantasy proneness, absorption, and gender. Int J Clin Exp Hypn 59: 103–121. doi: 10.1080/00207144.2011.522914
[21]  Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
[22]  Pedrabissi L, Santinello M (1989) Inventario per l'ansia di "stato" e di "tratto": Nuova versione Italiana dello STAI. Forma Y: Manuale. Florence: Organizzazioni Speciali.
[23]  Tellegen A, Atkinson G (1974) Openness to absorbing and self-altering experiences ("absorption"), a trait related to hypnotic susceptibility. J Abnorm Psychol 83: 268–277.
[24]  Weitzenhoffer AM, Hilgard ER (1959) Stanford Hypnotic Susceptibility Scale: Forms A and B. Palo Alto, CA: Consulting Psychologists Press.
[25]  Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38: 95–113. doi: 10.1016/j.neuroimage.2007.07.007
[26]  Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162–173. doi: 10.1006/cbmr.1996.0014
[27]  Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162–167. doi: 10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
[28]  Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52: 571–582. doi: 10.1016/j.neuroimage.2010.04.246
[29]  Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, et al. (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 106: 7209–7214. doi: 10.1073/pnas.0811879106
[30]  Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, et al. (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33: 636–647. doi: 10.1002/mrm.1910330508
[31]  Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, et al. (2013) The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders. Front Hum Neurosci 7: 356. doi: 10.3389/fnhum.2013.00356
[32]  Draganski B, May A (2008) Training-induced structural changes in the adult human brain. Behav Brain Res 192: 137–142. doi: 10.1016/j.bbr.2008.02.015
[33]  Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and presupplementary motor areas. Nat Rev Neurosci 9: 856–869. doi: 10.1038/nrn2478
[34]  Menzocchi M, Paoletti G, Huber A, Carli G, Cavallaro FI, et al. (2010) Hypnotizability and sensorimotor integration: an Italian Space Agency project. Int J Clin Exp Hypn 58: 122–135. doi: 10.1080/00207140903316169
[35]  Castellani E, Carli G, Santarcangelo EL (2011) Visual identification of haptically explored objects in high and low hypnotizable subjects. Int J Clin Exp Hypn 59: 250–265. doi: 10.1080/00207144.2011.546269
[36]  Craig AD (2010) The sentient self. Brain Struct Funct 214: 563–577. doi: 10.1007/s00429-010-0248-y
[37]  Wylie KP, Tregellas JR (2010) The role of the insula in schizophrenia. Schizophr Res 123: 93–104. doi: 10.1016/j.schres.2010.08.027
[38]  Garcia-Larrea L (2012) The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 42: 299–313. doi: 10.1016/j.neucli.2012.06.001
[39]  Aguilar EJ, Sanjuan J, Garcia-Marti G, Lull JJ, Robles M (2008) MR and genetics in schizophrenia: focus on auditory hallucinations. Eur J Radiol 67: 434–439. doi: 10.1016/j.ejrad.2008.02.046
[40]  Gruzelier J (2010) New and rediscovered insights about the nature of hypnotisability: exceptional ability and vulnerability. Contemporary Hypnosis 28: 116–135.
[41]  Horton JE, Crawford HJ, Harrington G, Downs JH III (2004) Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 127: 1741–1747. doi: 10.1093/brain/awh196
[42]  Whittingstall K, Bernier M, Houde JC, Fortin D, Descoteaux M (2013) Structural network underlying visuospatial imagery in humans. Cortex.
[43]  Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1: 59–65.
[44]  Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100: 3328–3342. doi: 10.1152/jn.90355.2008
[45]  Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58: 306–324. doi: 10.1016/j.neuron.2008.04.017
[46]  Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129: 564–583. doi: 10.1093/brain/awl004
[47]  Maquet P, Faymonville ME, Degueldre C, DelFiore G, Franck G, et al. (1999) Functional neuroanatomy of hypnotic state. Biol Psychiatry 45: 327–333. doi: 10.1016/s0006-3223(97)00546-5
[48]  Pyka M, Burgmer M, Lenzen T, Pioch R, Dannlowski U, et al. (2011) Brain correlates of hypnotic paralysis-a resting-state fMRI study. Neuroimage 56: 2173–2182. doi: 10.1016/j.neuroimage.2011.03.078
[49]  Huber A, Lui F, Porro CA (2013) Hypnotic susceptibility modulates brain activity related to experimental placebo analgesia. Pain 154: 1509–1518. doi: 10.1016/j.pain.2013.03.031
[50]  De Pascalis V, Bellusci A, Russo PM (2000) Italian norms for the Stanford Hypnotic Susceptibility Scale, Form C. Int J Clin Exp Hypn. 48: 315–323. doi: 10.1080/00207140008415249
[51]  Woody EZ, Barnier AJ, McConkey KM (2005) Multiple hypnotizabilities: differentiating the building blocks of hypnotic response. Psychol Assess 17: 200–211. doi: 10.1037/1040-3590.17.2.200
[52]  Molinari E, Baraldi P, Campanella M, Duzzi D, Nocetti L, et al. (2013) Human parietofrontal networks related to action observation detected at rest. Cereb Cortex 23: 178–186. doi: 10.1093/cercor/bhr393

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133