全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Design Factors That Influence the Performance of Flight Intercept Traps for the Capture of Longhorned Beetles (Coleoptera: Cerambycidae) from the Subfamilies Lamiinae and Cerambycinae

DOI: 10.1371/journal.pone.0093203

Full-Text   Cite this paper   Add to My Lib

Abstract:

In North America, cerambycid beetles can have significant ecological and economic effects on forest ecosystems, and the rate of introduction and/or detection of exotic species is increasing. Detection and survey programs rely on semiochemical-baited intercept traps which are often ineffective for large woodborers like cerambycid beetles. This study examined the effects of flight intercept trap design on the capture of cerambycid beetles in the subfamilies Lamiinae and Cerambycinae. These subfamilies are the two largest in the Cerambycidae and they include many of the most damaging cerambycid pests and species on regulatory watch lists in North America. This study demonstrates that intercept trap design, treatment of trap surfaces with a lubricant, and the type of collection cup all influence the capture of beetles from the subfamilies Lamiinae and Cerambycinae. It also demonstrates that the addition of a large lubricant-treated collar to the bottom funnel of a multiple-funnel trap significantly increases the capture of some Lamiinae. The best trap design for both subfamilies was a lubricant treated multiple-funnel [MF] trap equipped with a wet cup and lubricant treated large collar on the bottom funnel. This design captured between 4 and 14 times more Lamiinae and Cerambycinae than commercially-available MF and panel traps.

References

[1]  Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, et al. (2010) Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60: 886–897. doi: 10.1525/bio.2010.60.11.5
[2]  Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77: 1661–1666. doi: 10.2307/2265769
[3]  Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, et al. (2000) Bioticinvasions: causes, epidemiology, global consequences, and control. Ecol Appl 10: 689–710. doi: 10.1890/1051-0761(2000)010[0689:bicegc]2.0.co;2
[4]  Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50: 53–65. doi: 10.1641/0006-3568(2000)050[0053:eaecon]2.3.co;2
[5]  Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52: 273–288. doi: 10.1016/j.ecolecon.2004.10.002
[6]  Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: a threat to forest ecosystems. For Science Mon 30: 1–49.
[7]  Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42: 179–206. doi: 10.1146/annurev.ento.42.1.179
[8]  Haack RA (2001) Intercepted Scolytidae [Coleoptera] at US ports of entry: 1985–2000. Integrated Pest Management Reviews 6: 253–282.
[9]  Nowak DJ, Pasek JE, Sequeira RA, Crane DE, Mastro VC (2001) Potential effect of Anoplophora glabripennis (Coleoptera: Cerambycidae) on urban trees in the United States. J Econ Entomol 94: 116–122. doi: 10.1603/0022-0493-94.1.116
[10]  Brockerhoff EG, Bain J, Kimberley M, Knizek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36: 289–298. doi: 10.1139/x05-250
[11]  Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, et al. (2011) Economic impacts of non-native forest insects in the continental United States. PLoS One 6: e24587. doi: 10.1371/journal.pone.0024587
[12]  Yemshanov D, McKenney DW, de Groot P, Haugen D, Sidders D, et al. (2009) A bioeconomic approach to assess the impact of an alien invasive insect on timber supply and harvesting: a case study with Sirex noctilio in eastern Canada. Can J For Res 39: 154–168. doi: 10.1139/x08-164
[13]  Kovacs KF, Haight RF, McCullough DG, Mercader RJ, Siegert NW, et al. (2010) Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol Econ 69: 569–578. doi: 10.1016/j.ecolecon.2009.09.004
[14]  Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Ann Rev Entomol 53: 387–408. doi: 10.1146/annurev.ento.52.110405.091401
[15]  Sharov AA, Leonard D, Liebhold AM, Roberts EA, Dickerson W (2002) “Slow the spread”: a national program to contain the gypsy moth. J Forestry 100: 30–35.
[16]  Tobin PC, Sharov AA, Liebhold AM, Leonard AA, Leonard DS, et al. (2004) Management of the gypsy moth through a decision algorithm under the STS project. Amer Entomol 50: 200–209.
[17]  Sharov AA, Liebhold AM (1998) Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8: 1170–1179. doi: 10.1890/1051-0761(1998)008[1170:mostso]2.0.co;2
[18]  Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15: 316–320. doi: 10.1016/s0169-5347(00)01914-5
[19]  Liebhold AM, Bascompte J (2003) The Allee effect, stochastic dynamics and the eradication of alien species. Ecol Lett 6: 133–140. doi: 10.1046/j.1461-0248.2003.00405.x
[20]  Wardlaw T, Bashford R (2007) The effectiveness of thinning eucalypts in reducing losses from stem-boring insects and fungal rots. Paper to: Borers and Rot Conference. Perth, Western Australia, 5–7 November 2007. Institute of Foresters of AustraliaCanberra
[21]  Borden JH (1982) Aggregation pheromones. In: Mitton JB, Sturgeon KB, editors.Bark beetles of North American conifers: A system for the study of evolutionary biology. University of Texas, Austin, Texas. pp. 74–139.
[22]  Linsley EG (1959) Ecology of Cerambycidae. Ann Rev Entomol 4: 99–138. doi: 10.1146/annurev.en.04.010159.000531
[23]  Solomon JD (1995) Guide to insect borers of North American trees and shrubs. Agriculture Handbook #706, USDA Forest Service, Washington DC. 735 p.
[24]  Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14: 123–150. doi: 10.1007/s00049-004-0277-1
[25]  Mitchell RF, Graham EE, Wong JCH, Reagel PF, Striman BL, et al. (2011) Fuscumol and fuscumol acetate are general attractants for many species of cerambycid beetles in the subfamily Lamiinae. Entomol Exp Appl 141: 71–77. doi: 10.1111/j.1570-7458.2011.01167.x
[26]  Hanks LM, Millar JG (2013) Field bioassays of cerambycid pheromones reveal widespread parsimony of pheromone structures, synergism by host plant volatiles, and antagonism by components from heterospecifics. Chemoecology 23: 21–44. doi: 10.1007/s00049-012-0116-8
[27]  McIntosh RL, Katinic PJ, Allison JD, Borden JH, Downey DL (2001) Comparative efficacy of five types of trap for woodborers in the Cerambycidae, Buprestidae and Siricidae. Agric For Entomol 3: 113–120. doi: 10.1046/j.1461-9563.2001.00095.x
[28]  de Groot P, Nott RW (2001) Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera: Cerambycidae). Agric For Entomol 3: 107–111. doi: 10.1046/j.1461-9563.2001.00087.x
[29]  de Groot P, Nott RW (2003) Response of Monochamus (Coleoptera: Cerambycidae) and some Buprestidae to flight intercept traps. J Appl Entomol 127: 548–552. doi: 10.1046/j.1439-0418.2003.00799.x
[30]  Morewood WD, Hein KE, Katinic PJ, Borden JH (2002) An improved trap for large wood-boring insects, with special reference to Monochamus scutellatus (Coleoptera: Cerambycidae). Can J For Res 32: 519–525. doi: 10.1139/x01-224
[31]  Sweeney J, Gutowski JM, Price J, de Groot P (2006) Effect of semiochemical release rate, killing agent, and trap design on detection of Tetropium fuscum (F.) and other longhorn beetles (Coleoptera: Cerambycidae). Environ Entomol 35: 645–654. doi: 10.1603/0046-225x-35.3.645
[32]  Holland JD (2006) Cerambycidae larval host condition predicts trap efficiency. Environ Entomol 35: 1647–1653. doi: 10.1603/0046-225x(2006)35[1647:clhcpt]2.0.co;2
[33]  Miller DR, Duerr DA (2008) Comparison of arboreal beetle catches in wet and dry collection cups with Lindgren multiple funnel traps. J Econ Entomol 101: 107–113. doi: 10.1603/0022-0493(2008)101[107:coabci]2.0.co;2
[34]  Yanega D (1996) Field guide to northeastern longhorned beetles (Coleoptera: Cerambycidae). Illinois Natural History Survey, Manual 6. Champaign, IL. 174 p.
[35]  Lingafelter SW (2007) Illustrated key to the longhorned woodboring beetles of the eastern United States. Coleopterists Society Special Publication No. 3, North Potomac, MD. 206 p.
[36]  Allison JD, Borden JH, McIntosh RL, de Groot P, Gries R (2001) Kairomonal responses by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. J Chem Ecol 27: 633–646.
[37]  Allison JD, Morewood WD, Borden JH, Hein KE, Wilson IM (2003) Differential bioactivity of Ips and Dendroctonus pheromone components for Monochamus clamator and M. scutellatus (Coleoptera: Cerambycidae). Environ Entomol 32: 23–30. doi: 10.1603/0046-225x-32.1.23
[38]  Allison JD, McKenney JL, Miller DR, Gimmel ML (2013) Kairomonal responses of natural enemies and associates of the southern Ips (Coleoptera: Curculionidae: Scolytinae) to ipsdienol, ipsenol and cis-verbenol. J Insect Behav 26: 321–335. doi: 10.1007/s10905-012-9349-1
[39]  Hanks LM, Millar JG, Mongold-Diers JA, Wong JCH, Meier LR, et al. (2012) Using blends of cerambycid beetle pheromones and host plant volatiles to simultaneously attract a diversity of cerambycid species. Can J For Res 42: 1050–1059. doi: 10.1139/x2012-062
[40]  Imrei Z, Millar JG, Janik G, Toth M (2013) Field screening of known pheromone components of longhorned beetles in the subfamily Cerambycinae (Coleoptera: Cerambycidae) in Hungary. Z Naturforsch 68c: 236–242. doi: 10.5560/znc.2013.68c0236
[41]  Lacey ES, Ginzel MD, Millar JG, Hanks LM (2004) Male-produced aggregation pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. J Chem Ecol 30: 1493–1507. doi: 10.1023/b:joec.0000042064.25363.42
[42]  McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR. 300 p.
[43]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc Series B 57: 289–300.
[44]  Garcia LV (2004) Escaping the Bonferonni iron claw in ecological studies. Oikos 105: 657–663. doi: 10.1111/j.0030-1299.2004.13046.x
[45]  Allison JD, McKenney JL, Millar JG, McElfresh JS, Mitchell RS, et al. (2012) Response of the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae) to known cerambycid pheromones in the presence and absence of the host plant volatile α-pinene. Environ Entomol 41: 1587–1596. doi: 10.1603/en12185
[46]  (APHIS) Animal and Plant Health Inspection Service. (2006) Exotic wood borer bark beetle national survey field manual. PPQ/EDP/EP staff.
[47]  Rabaglia R, Duerr D, Acciavatti RE, Ragenovich I (2008) Early detection and rapid response for non-native bark and ambrosia beetles. USDA Forest Service, Forest Health Protection, Washington, DC.
[48]  Chénier JVR, Philogène BJR (1989) Evaluation of conifer feeding beetles and other forest Coleoptera. Can Entomol 121: 159–167. doi: 10.4039/ent121159-2
[49]  Czokaljo D, McLaughlin J, de Groot P, Warren JC, Teale SA, et al. (2001) Intercept panel trap modified for monitoring forest Cerambycidae. J Forest Sci 47: 34–36.
[50]  Lindgren BS (1983) A multiple-funnel trap for scolytid beetles (Coleoptera). Can Entomol 115: 299–302. doi: 10.4039/ent115299-3
[51]  Miller DR, Crowe CM, Barnes BF, Gandhi KJK, Duerr DA (2013) Attaching lures to multiple-funnel traps targeting saproxylic beetles (Coleoptera) in pine stands: Inside or outside funnels? J Econ Entomol 106: 206–214. doi: 10.1603/ec12254
[52]  Sweeney J, de Groot P, MacDonald L, Smith S, Cocquempot C, et al. (2004) Host volatile attractants and traps for detection of Tetropium fuscum (F.), Tetropium castaneum L., and other longhorned beetles (Coleoptera: Cerambycidae). Environ Entomol 33: 844–854. doi: 10.1603/0046-225x-33.4.844
[53]  Graham EE, Mitchell RF, Reagel PF, Barbour JD, Millar JG, et al. (2010) Treating panel traps with a fluoropolymer dramatically enhances their efficiency in capturing cerambycid beetles. J Econ Entomol 103: 641–647. doi: 10.1603/ec10013
[54]  Allison JD, Johnson CW, Meeker JR, Strom BL, Butler SM (2011) Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps. J Econ Entomol 104: 1258–1264. doi: 10.1603/ec11044
[55]  Nakamura K, Soné K, Ookuma H (1999) Modification of a commercial attraction trap for live trapping of Monochamus alternatus (Hope) adults (Coleoptera: Cerambycidae). Jap J Appl Entomol Zool 43: 55–59. doi: 10.1303/jjaez.43.55

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133