Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation.
References
[1]
Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67: 181–198. doi: 10.1016/j.neuron.2010.07.002
[2]
Chen RL, Balami JS, Esiri MM, Chen LK, Buchan AM (2010) Ischemic stroke in the elderly: an overview of evidence. Nat Rev Neurol 6: 256–265. doi: 10.1038/nrneurol.2010.36
[3]
Rojas JI, Zurru MC, Romano M, Patrucco L, Cristiano E (2007) Acute ischemic stroke and transient ischemic attack in the very old—risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years. Eur J Neurol 14: 895–899. doi: 10.1111/j.1468-1331.2007.01841.x
[4]
Duncan PW, Zorowitz R, Bates B, Choi JY, Glasberg JJ, et al. (2005) Management of Adult Stroke Rehabilitation Care: a clinical practice guideline. Stroke 36: e100–143. doi: 10.1161/01.str.0000180861.54180.ff
Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49: 93–102. doi: 10.1007/s00234-006-0183-z
[7]
Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13: 11753–11772. doi: 10.3390/ijms130911753
[8]
Love S (2003) Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry 27: 267–282. doi: 10.1016/s0278-5846(03)00022-8
[9]
Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, et al. (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1: 17–25. doi: 10.1602/neurorx.1.1.17
[10]
Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, et al. (1999) Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19: 3414–3422. doi: 10.3995/jstroke.22.472
[11]
Smrcka M, Horky M, Otevrel F, Kuchtickova S, Kotala V, et al. (2003) The onset of apoptosis of neurons induced by ischemia-reperfusion injury is delayed by transient period of hypertension in rats. Physiol Res 52: 117–122.
[12]
Love S, Barber R, Wilcock GK (2000) Neuronal death in brain infarcts in man. Neuropathol Appl Neurobiol 26: 55–66. doi: 10.1046/j.1365-2990.2000.00218.x
[13]
Sairanen T, Karjalainen-Lindsberg ML, Paetau A, Ijas P, Lindsberg PJ (2006) Apoptosis dominant in the periinfarct area of human ischaemic stroke—a possible target of antiapoptotic treatments. Brain 129: 189–199. doi: 10.1093/brain/awh645
[14]
Schulz JB, Weller M, Moskowitz MA (1999) Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45: 421–429. doi: 10.1002/1531-8249(199904)45:4<421::aid-ana2>3.0.co;2-q
[15]
Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568.
[16]
Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, et al. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030. doi: 10.1016/0896-6273(94)90266-6
[17]
Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD (1998) Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci 18: 1009–1019.
[18]
Hata R, Gillardon F, Michaelidis TM, Hossmann KA (1999) Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis 14: 117–124. doi: 10.1023/a:1020709814456
[19]
Cao G, Pei W, Ge H, Liang Q, Luo Y, et al. (2002) In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J Neurosci 22: 5423–5431.
[20]
Doeppner TR, El Aanbouri M, Dietz GP, Weise J, Schwarting S, et al. (2010) Transplantation of TAT-Bcl-xL-transduced neural precursor cells: long-term neuroprotection after stroke. Neurobiol Dis 40: 265–276. doi: 10.1016/j.nbd.2010.05.033
[21]
Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16: 162–172. doi: 10.1016/j.semcancer.2006.03.005
[22]
Steinacker P, Aitken A, Otto M (2011) 14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 22: 696–704. doi: 10.1016/j.semcdb.2011.08.005
[23]
Hu X, Rea HC, Wiktorowicz JE, Perez-Polo JR (2006) Proteomic analysis of hypoxia/ischemia-induced alteration of cortical development and dopamine neurotransmission in neonatal rat. J Proteome Res 5: 2396–2404. doi: 10.1021/pr060209x
[24]
Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, et al. (2009) Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation 119: 1124–1134. doi: 10.1161/circulationaha.108.812537
[25]
Won J, Kim DY, La M, Kim D, Meadows GG, et al. (2003) Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J Biol Chem 278: 19347–19351. doi: 10.1074/jbc.m213098200
[26]
Asoh S, Ohta S (2008) PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Adv Drug Deliv Rev 60: 499–516. doi: 10.1016/j.addr.2007.09.011
[27]
Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57: 559–577. doi: 10.1016/j.addr.2004.12.001
[28]
Kilic U, Kilic E, Dietz GP, Bahr M (2003) Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke 34: 1304–1310. doi: 10.1161/01.str.0000066869.45310.50
[29]
Lai Y, Du L, Dunsmore KE, Jenkins LW, Wong HR, et al. (2005) Selectively increasing inducible heat shock protein 70 via TAT-protein transduction protects neurons from nitrosative stress and excitotoxicity. J Neurochem 94: 360–366. doi: 10.1111/j.1471-4159.2005.03212.x
[30]
Guegan C, Braudeau J, Couriaud C, Dietz GP, Lacombe P, et al. (2006) PTD-XIAP protects against cerebral ischemia by anti-apoptotic and transcriptional regulatory mechanisms. Neurobiol Dis 22: 177–186. doi: 10.1016/j.nbd.2005.10.014
[31]
Cai B, Lin Y, Xue XH, Fang L, Wang N, et al. (2011) TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 227: 224–231. doi: 10.1016/j.expneurol.2010.11.009
[32]
Jeong HJ, Kim DW, Kim MJ, Woo SJ, Kim HR, et al. (2012) Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury. Exp Mol Med 44: 586–593. doi: 10.3858/emm.2012.44.10.067
[33]
Ye N, Liu S, Lin Y, Rao P (2011) Protective effects of intraperitoneal injection of TAT-SOD against focal cerebral ischemia/reperfusion injury in rats. Life Sci 89: 868–874. doi: 10.1016/j.lfs.2011.09.015
[34]
van der Kooij MA, Nijboer CH, Ohl F, Groenendaal F, Heijnen CJ, et al. (2010) NF-kappaB inhibition after neonatal cerebral hypoxia-ischemia improves long-term motor and cognitive outcome in rats. Neurobiol Dis 38: 266–272. doi: 10.1016/j.nbd.2010.01.016
[35]
Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, et al. (2008) A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke 39: 2578–2586. doi: 10.1161/strokeaha.108.516401
[36]
Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290: 1717–1721. doi: 10.1126/science.290.5497.1717
[37]
Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, et al. (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172: 454–469. doi: 10.2353/ajpath.2008.070876
[38]
Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32: 329–339. doi: 10.1016/j.nbd.2008.07.022
[39]
Adhami F, Schloemer A, Kuan CY (2007) The roles of autophagy in cerebral ischemia. Autophagy 3: 42–44.
Wang RC, Wei Y, An Z, Zou Z, Xiao G, et al. (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956–959. doi: 10.1126/science.1225967
[42]
Pozuelo-Rubio M (2011) 14-3-3zeta binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy 7: 240–242. doi: 10.4161/auto.7.2.14286
[43]
Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2: 13–34.
[44]
Yin W, Cao G, Johnnides MJ, Signore AP, Luo Y, et al. (2006) TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF. Neurobiol Dis 21: 358–371. doi: 10.1016/j.nbd.2005.07.015
[45]
Sheng R, Zhang LS, Han R, Liu XQ, Gao B, et al. (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy. 2010 6: 482–494. doi: 10.4161/auto.6.4.11737
[46]
Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, et al. (2010) Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6: 738–753. doi: 10.4161/auto.6.6.12573
[47]
Gao L, Jiang T, Guo J, Liu Y, Cui G, et al. (2012) Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 7: e46092. doi: 10.1371/journal.pone.0046092
[48]
Hu Z, Bian X, Liu X, Zhu Y, Zhang X, et al. (2013) Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res 1491: 204–212. doi: 10.1016/j.brainres.2012.11.004
[49]
Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91. doi: 10.1161/01.str.20.1.84
[50]
Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, et al. (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10: 290–293. doi: 10.1038/jcbfm.1990.47
[51]
Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29: 132–141. doi: 10.1016/j.nbd.2007.08.005
[52]
Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18: 571–580. doi: 10.1038/cdd.2010.191
[53]
Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, et al. (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283: 22847–22857. doi: 10.1074/jbc.m802182200
[54]
Wang J, Bai X, Chen Y, Zhao Y, Liu X (2012) Homocysteine induces apoptosis of rat hippocampal neurons by inhibiting 14-3-3epsilon expression and activating calcineurin. PLoS One 7: e48247. doi: 10.1371/journal.pone.0048247
[55]
Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157: 195–206. doi: 10.1111/j.1476-5381.2009.00057.x
[56]
Misra A, Ganesh S, Shahiwala A, Shah SP (2003) Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6: 252–273.
[57]
Kilic E, Kilic U, Hermann DM (2006) TAT fusion proteins against ischemic stroke: current status and future perspectives. Front Biosci 11: 1716–1721. doi: 10.2741/1917
[58]
Denicourt C, Dowdy SF (2003) Protein transduction technology offers novel therapeutic approach for brain ischemia. Trends Pharmacol Sci 24: 216–218. doi: 10.1016/s0165-6147(03)00074-9
[59]
Soane L, Fiskum G (2005) TAT-mediated endocytotic delivery of the loop deletion Bcl-2 protein protects neurons against cell death. J Neurochem 95: 230–243. doi: 10.1111/j.1471-4159.2005.03359.x
[60]
Jeong HJ, Kim DW, Woo SJ, Kim HR, Kim SM, et al. (2012) Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model. Mol Cells 33: 471–478. doi: 10.1007/s10059-012-2255-8
[61]
Gou X, Wang Q, Yang Q, Xu L, Xiong L (2011) TAT-NEP1-40 as a novel therapeutic candidate for axonal regeneration and functional recovery after stroke. J Drug Target 19: 86–95. doi: 10.3109/10611861003733961
[62]
Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57: 559–577. doi: 10.1016/j.addr.2004.12.001
[63]
Rosenquist M (2003) 14-3-3 proteins in apoptosis. Braz J Med Biol Res 36: 403–408. doi: 10.1590/s0100-879x2003000400001
[64]
Gardino AK, Yaffe MB (2011) 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 22: 688–695. doi: 10.1016/j.semcdb.2011.09.008
[65]
Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, et al. (2000) Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci U S A 97: 2875–2880. doi: 10.1073/pnas.040556597
[66]
Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, et al.. (2013) The Regulatory Role of NF-kappaB in Autophagy-like Cell Death after Focal Cerebral Ischemia in Mice. Neuroscience.
[67]
Shi R, Weng J, Zhao L, Li XM, Gao TM, et al. (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18: 250–260. doi: 10.1111/j.1755-5949.2012.00295.x
[68]
Wang JY, Xia Q, Chu KT, Pan J, Sun LN, et al. (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70: 314–322. doi: 10.1097/nen.0b013e31821352bd
[69]
Zhong J, Kong X, Zhang H, Yu C, Xu Y, et al. (2012) Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation. PLoS One 7: e39378. doi: 10.1371/journal.pone.0039378
[70]
Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36: 2445–2462. doi: 10.1016/j.biocel.2004.02.002
[71]
Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119: 259–270. doi: 10.1242/jcs.02735