全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

DOI: 10.1371/journal.pone.0093377

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

References

[1]  Udupa A, Nahar P, Shah S, Kshirsagar M, Ghongane B (2013) A comparative study of effects of Omega-3 fatty acids, alpha lipoic acid and vitamin E in Type 2 diabetes mellitus. Ann Med Health Sci Res 3: 442–446. doi: 10.4103/2141-9248.117954
[2]  DPTT study group, Engebretson S, Gelato M, Hyman L, Michalowicz BS, et al (2013) Design features of the Diabetes and Periodontal Therapy Trial (DPTT): A multicenter randomized single-masked clinical trial testing the effect of nonsurgical periodontal therapy on glycosylated hemoglobin (HbA1c) levels in subjects with type 2 diabetes and chronic periodontitis. Contemp Clin Trials 36: 515–26. doi: 10.1016/j.cct.2013.09.010
[3]  Akca K, Sarac E, Baysal U, Fanuscu M, Chang TL, et al. (2007) Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats. Head Face Med 3: 28. doi: 10.1186/1746-160x-3-28
[4]  Nelson RG, Shlossman M, Budding LM, Pettitt DJ, Saad MF, et al. (1990) Periodontal disease and NIDDM in Pima Indians. Diabetes Care 13: 836–840. doi: 10.2337/diacare.13.8.836
[5]  Oates TW, Huynh-Ba G, Vargas A, Alexander P, Feine J (2013) A critical review of diabetes, glycemic control, and dental implant therapy. Clin Oral Implants Res 24: 117–127. doi: 10.1111/j.1600-0501.2011.02374.x
[6]  Manfredi M, McCullough MJ, Vescovi P, Al-Kaarawi ZM, Porter SR (2004) Update on diabetes mellitus and related oral diseases. Oral Dis 10: 187–200. doi: 10.1111/j.1601-0825.2004.01019.x
[7]  Skamagas M, Breen TL, LeRoith D (2008) Update on diabetes mellitus: prevention, treatment, and association with oral diseases. Oral Dis 14: 105–114. doi: 10.1111/j.1601-0825.2007.01425.x
[8]  Deshpande K, Jain A, Sharma R, Prashar S, Jain R (2010) Diabetes and periodontitis. J Indian Soc Periodontol 14: 207–212. doi: 10.4103/0972-124x.76917
[9]  Darnell JA, Saunders MJ (1990) Oral manifestations of the diabetic patient. Tex Dent J 107: 23–27.
[10]  Lamey PJ, Darwazeh AM, Frier BM (1992) Oral disorders associated with diabetes mellitus. Diabet Med 9: 410–416. doi: 10.1111/j.1464-5491.1992.tb01809.x
[11]  George K, Zafiropoulos GG, Murat Y, Hubertus S, Nisengard RJ (1994) Clinical and microbiological status of osseointegrated implants. J Periodontol 65: 766–770. doi: 10.1902/jop.1994.65.8.766
[12]  Knoernschild KL, Bacon WL, Fischman GS, Campbell SD (2001) Effect of pH on endotoxin affinity for metal-ceramic alloys. J Prosthet Dent 86: 644–649. doi: 10.1067/mpr.2001.120842
[13]  Knoernschild KL, Tompkins GR, Lefebvre CA, Griffiths LL, Schuster GS (1996) Effect of pH on Porphyromonas gingivalis endotoxin affinity for resins. Int J Prosthodont 9: 239–247.
[14]  Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, et al. (2003) Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185: 5591–5601. doi: 10.1128/jb.185.18.5591-5601.2003
[15]  Robinson FG, Knoernschild KL, Sterrett JD, Tompkins GR (1996) Porphyromonas gingivalis endotoxin affinity for dental ceramics. J Prosthet Dent 75: 217–227. doi: 10.1016/s0022-3913(96)90102-x
[16]  Cortada M, Giner L, Costa S, Gil FJ, Rodriguez D, et al. (2000) Galvanic corrosion behavior of titanium implants coupled to dental alloys. J Mater Sci Mater Med 11: 287–293.
[17]  Vieira AC, Ribeiro AR, Rocha LA, Celis JP (2006) Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 261: 994–1001. doi: 10.1016/j.wear.2006.03.031
[18]  Nikolopoulou F (2006) Saliva and dental implants. Implant Dent 15: 372–376. doi: 10.1097/01.id.0000239320.57403.8d
[19]  Chaturvedi TP (2009) An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res 20: 91–98. doi: 10.4103/0970-9290.49068
[20]  Correa CB, Pires JR, Fernandes-Filho RB, Sartori R, Vaz LG (2009) Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces. J Prosthodont 18: 382–387. doi: 10.1111/j.1532-849x.2009.00463.x
[21]  Messer RL, Seta F, Mickalonis J, Brown Y, Lewis JB, et al. (2010) Corrosion of phosphate-enriched titanium oxide surface dental implants (TiUnite) under in vitro inflammatory and hyperglycemic conditions. J Biomed Mater Res B Appl Biomater 92: 525–534. doi: 10.1002/jbm.b.31548
[22]  Messer RL, Tackas G, Mickalonis J, Brown Y, Lewis JB, et al. (2009) Corrosion of machined titanium dental implants under inflammatory conditions. J Biomed Mater Res B Appl Biomater 88: 474–481. doi: 10.1002/jbm.b.31162
[23]  Barao VA, Mathew MT, Assuncao WG, Yuan JC, Wimmer MA, et al. (2011) The role of lipopolysaccharide on the electrochemical behavior of titanium. J Dent Res 90: 613–618. doi: 10.1177/0022034510396880
[24]  Gittens RA, Olivares-Navarrete R, Tannenbaum R, Boyan BD, Schwartz Z (2011) Electrical implications of corrosion for osseointegration of titanium implants. J Dent Res 90: 1389–1397. doi: 10.1177/0022034511408428
[25]  Barao VA, Mathew MT, Assuncao WG, Yuan JC, Wimmer MA, et al. (2012) Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH – an electrochemical study. Clin Oral Implants Res 23: 1055–1062. doi: 10.1111/j.1600-0501.2011.02265.x
[26]  Zhoua LY, Mitsuo N, Toshikazu A, Hisao F, Todaa H (2007) Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials 48: 380–384. doi: 10.1016/j.msea.2005.03.032
[27]  Oliveira NT, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater 5: 399–405. doi: 10.1016/j.actbio.2008.07.010
[28]  Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T (2009) Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomater 5: 3625–3639. doi: 10.1016/j.actbio.2009.05.037
[29]  Olmedo DG, Paparella ML, Brandizzi D, Cabrini RL (2010) Reactive lesions of peri-implant mucosa associated with titanium dental implants: a report of 2 cases. Int J Oral Maxillofac Surg 39: 503–507. doi: 10.1016/j.ijom.2009.11.007
[30]  Olmedo DG, Paparella ML, Spielberg M, Brandizzi D, Guglielmotti MB, et al. (2012) Oral mucosa tissue response to titanium cover screws. J Periodontol 83: 973–980. doi: 10.1902/jop.2011.110392
[31]  Trisi P, Lazzara R, Rebaudi A, Rao W, Testori T, et al. (2003) Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol 74: 945–956. doi: 10.1902/jop.2003.74.7.945
[32]  Xavier SP, Carvalho PS, Beloti MM, Rosa AL (2003) Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent 31: 173–180. doi: 10.1016/s0300-5712(03)00027-7
[33]  Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, et al. (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83: 529–533. doi: 10.1177/154405910408300704
[34]  Tavares MG, de Oliveira PT, Nanci A, Hawthorne AC, Rosa AL, et al. (2007) Treatment of a commercial, machined surface titanium implant with H2SO4/H2O2 enhances contact osteogenesis. Clin Oral Implants Res 18: 452–458. doi: 10.1111/j.1600-0501.2007.01344.x
[35]  Pai PS, Mathew MT, Stack MM, Rocha LA (2008) Some thoughts on neural network modelling of microabrasion-corrosion processes. Tribology International 41: 672–681. doi: 10.1016/j.triboint.2007.11.015
[36]  Lin A, Wang CJ, Kelly J, Gubbi P, Nishimura I (2009) The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Int J Oral Maxillofac Implants 24: 808–816.
[37]  Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20 Suppl 4172–184. doi: 10.1111/j.1600-0501.2009.01775.x
[38]  Gotfredsen K, Berglundh T, Lindhe J (2001) Bone reactions adjacent to titanium implants subjected to static load of different duration. A study in the dog (III). Clin Oral Implants Res 12: 552–558. doi: 10.1034/j.1600-0501.2001.120602.x
[39]  Klokkevold PR, Han TJ (2007) How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? Int J Oral Maxillofac Implants 22 Suppl: 173–202.
[40]  Tawil G, Younan R, Azar P, Sleilati G (2008) Conventional and advanced implant treatment in the type II diabetic patient: surgical protocol and long-term clinical results. Int J Oral Maxillofac Implants 23: 744–752.
[41]  Tamam E, Turkyilmaz I (2012) Effects of pH and elevated glucose levels on the electrochemical behaviour of dental implants. J Oral Implantol In-Press. doi: http://dx.doi.org/10.1563/AAID-JOI-D-11-?00083.1.
[42]  Mathew MT, Barao VA, Yuan JC, Assuncao WG, Sukotjo C, et al. (2012) What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? J Mech Behav Biomed Mater 8: 71–85. doi: 10.1016/j.jmbbm.2011.11.004
[43]  Barao VA, Mathew MT, Yuan JC, Knoernschild KL, Assuncao WG, et al. (2013) Influence of corrosion on lipopolysaccharide affinity for two different titanium materials. J Prosthet Dent 110: 462–470. doi: 10.1016/j.prosdent.2013.04.004
[44]  Abe Y, Kokubo T, Yamamuro T (1990) Apatite coating on ceramics, metals and polymers utilizing a biological process. J Mater Sci Mater Med 1: 233–238. doi: 10.1007/bf00701082
[45]  Zhang SM, Qiu J, Tian F, Guo XK, Zhang FQ, et al. (2013) Corrosion behavior of pure titanium in the presence of Actinomyces naeslundii. J Mater Sci Mater Med 24: 1229–1237. doi: 10.1007/s10856-013-4888-3
[46]  Faverani LP, Barao VA, Ramalho-Ferreira G, Ferreira MB, Garcia-Junior IR, et al. (2014) Effect of bleaching agents and soft drink on titanium surface topography. J Biomed Mater Res B Appl Biomater 102: 22–30. doi: 10.1002/jbm.b.32949
[47]  Al Jabbari Y, Fournelle R, Ziebert G, Toth J, Iacopino A (2008) Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis. J Prosthodont 17: 181–191. doi: 10.1111/j.1532-849x.2007.00271.x
[48]  Assuncao WG, Jorge JR, Dos Santos PH, Barao VA, Gomes EA, et al. (2011) The effect of mechanical cycling and different misfit levels on Vicker's [sic] microhardness of retention screws for single implant-supported prostheses. J Prosthodont 20: 523–527. doi: 10.1111/j.1532-849x.2011.00753.x
[49]  Bundy KJ (1994) Corrosion and other electrochemical aspects of biomaterials. Crit Rev Biomed Eng 22: 139–251.
[50]  Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R, Basle MF, et al. (2006) Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater 2: 121–129. doi: 10.1016/j.actbio.2005.09.004
[51]  Morgan TD, Wilson M (2001) The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor. J Appl Microbiol 91: 47–53. doi: 10.1046/j.1365-2672.2001.01338.x
[52]  Barao VA, Yoon CJ, Mathew MT, Yuan JC, Wu CD, et al.. (2014) Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy. J Periodontol (in press).
[53]  Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, et al. (1996) The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 7: 201–211. doi: 10.1034/j.1600-0501.1996.070302.x
[54]  Yang CH, Wang YT, Tsai WF, Ai CF, Lin MC, et al. (2011) Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface. Clin Oral Implants Res 22: 1426–1432. doi: 10.1111/j.1600-0501.2010.02132.x
[55]  Li JL, Sun MR, Ma XX, Tang GZ (2006) Structure and tribological performance of modified layer on Ti6Al4V alloy by plasma-based ion implantation with oxygen. Wear 261: 1247–1252. doi: 10.1016/j.wear.2006.03.010
[56]  Affronti J (2011) Chronic pancreatitis and exocrine insufficiency. Prim Care 38: 515–537; ix.
[57]  Li B, Luo C, Chowdhury S, Gao ZH, Liu JL (2013) Parp1 deficient mice are protected from streptozotocin-induced diabetes but not caerulein-induced pancreatitis, independent of the induction of Reg family genes. Regul Pept 186C: 83–91. doi: 10.1016/j.regpep.2013.07.005
[58]  Hwang AL, Haynes K, Hwang WT, Yang YX (2013) Metformin and survival in pancreatic cancer: a retrospective cohort study. Pancreas 42: 1054–1059. doi: 10.1097/mpa.0b013e3182965a3c
[59]  Savari O, Zielinski MC, Wang X, Misawa R, Millis JM, et al. (2013) Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets 5: 226–228. doi: 10.4161/isl.26432
[60]  Baker P, Fain P, Kahles H, Yu L, Hutton J, et al. (2012) Genetic determinants of 21-hydroxylase autoantibodies amongst patients of the Type 1 Diabetes Genetics Consortium. J Clin Endocrinol Metab 97: E1573–1578. doi: 10.1210/jc.2011-2824
[61]  Colucci R, Jimenez RE, Farrar W, Malgor R, Kohn L, et al. (2012) Coexistence of Cushing syndrome from functional adrenal adenoma and Addison disease from immune-mediated adrenalitis. J Am Osteopath Assoc 112: 374–379.
[62]  Meyer G, Hackemann A, Penna-Martinez M, Badenhoop K (2013) What affects the quality of life in autoimmune Addison's disease? Horm Metab Res 45: 92–95. doi: 10.1055/s-0032-1331766
[63]  Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H (2003) Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 18: 357–368.
[64]  Winter W, Klein D, Karl M (2013) Effect of model parameters on finite element analysis of micromotions in implant dentistry. J Oral Implantol 39: 23–29. doi: 10.1563/aaid-joi-d-11-00221

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133