全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Sexually Dimorphic Expression of vasa Isoforms in the Tongue Sole (Cynoglossus semilaevis)

DOI: 10.1371/journal.pone.0093380

Full-Text   Cite this paper   Add to My Lib

Abstract:

The vasa gene encodes an ATP-dependent RNA helicase of the DEAD box protein family that functions in a broad range of molecular events involving duplex RNA. In most species, the germline specific expression of vasa becomes a molecular marker widely used in the visualization and labeling of primordial germ cells (PGCs) and a tool in surrogate broodstock production through PGC transplantation. The vasa gene from tongue sole (Cynoglossus semilaevis) was characterized to promote the development of genetic breeding techniques in this species. Three C. semilaevis vasa transcripts were isolated, namely vas-l, vas-m, and vas-s. Quantitative real-time PCR results showed that C. semilaevis vasa transcripts were prevalently expressed in gonads, with very weak expression of vas-s in other tissues. Embryonic development expression profiles revealed the onset of zygotic transcription of vasa mRNAs and the maternal deposit of the three transcripts. The genetic ZW female juvenile fish was discriminated from genetic ZZ males by a pair of female specific primers. Only the expression of vas-s can be observed in both sexes during early gonadal differentiation. Before PGCs started mitosis, there was sexually dimorphic expression of vas-s with the ovary showing higher levels and downward trend. The results demonstrated the benefits of vasa as a germline specific marker for PGCs during embryonic development and gonadal differentiation. This study lays the groundwork for further application of C. semilaevis PGCs in fish breeding.

References

[1]  Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5: 232–241. doi: 10.1038/nrm1335
[2]  Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211: 299–308. doi: 10.1007/s004270100156
[3]  Schupbach T, Wieschaus E (1986) Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol 113: 443–448. doi: 10.1016/0012-1606(86)90179-x
[4]  Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, et al. (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of Planarians. Dev Biol 206: 73–87. doi: 10.1006/dbio.1998.9130
[5]  Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, et al. (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A 93: 13837–13842. doi: 10.1073/pnas.93.24.13837
[6]  Fujimura M, Takamura K (2000) Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev Genes Evol 210: 64–72. doi: 10.1007/s004270050012
[7]  Komiya T, Itoh K, Ikenishi K, Furusawa M (1994) Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev Biol 162: 354–363. doi: 10.1006/dbio.1994.1093
[8]  Tsunekawa N, Naito M, Sakai Y, Nishida T, Noce T (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127: 2741–2750.
[9]  Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, et al. (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci U S A 91: 12258–12262. doi: 10.1073/pnas.91.25.12258
[10]  Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A 97: 9585–9590. doi: 10.1073/pnas.160274797
[11]  Yoshizaki G, Sakatani S, Tominaga H, Takeuchi T (2000) Cloning and characterization of a vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol Reprod Dev 55: 364–371. doi: 10.1002/(sici)1098-2795(200004)55:4<364::aid-mrd2>3.3.co;2-#
[12]  Blázquez M, Gonzalez A, Mylonas CC, Piferrer F (2011) Cloning and sequence analysis of a vasa homolog in the European sea bass (Dicentrarchus labrax): tissue distribution and mRNA expression levels during early development and sex differentiation. Gen Comp Endocrinol 170: 322–333. doi: 10.1016/j.ygcen.2010.10.007
[13]  Pacchiarini T, Cross I, Leite RB, Gavaia P, Ortiz-Delgado JB, et al. (2013) Solea senegalensis vasa transcripts: molecular characterisation, tissue distribution and developmental expression profiles. Reprod Fertil Dev 25: 646–660. doi: 10.1071/rd11240
[14]  Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124: 3157–3165.
[15]  Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66: 95–105. doi: 10.1016/s0925-4773(97)00099-3
[16]  Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2002) Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation. Mech Dev 111: 167–171. doi: 10.1016/s0925-4773(01)00613-x
[17]  Cao M, Yang Y, Xu H, Duan J, Cheng N, et al. (2012) Germ cell specific expression of Vasa in rare minnow, Gobiocypris rarus. Comp Biochem Physiol A Mol Integr Physiol 162: 163–170. doi: 10.1016/j.cbpa.2012.02.007
[18]  Wu X, Wang Z, Jiang J, Gao J, Wang J, et al. (2014) Cloning, expression promoter analysis of vasa gene in Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 167: 41–50. doi: 10.1016/j.cbpb.2013.06.004
[19]  Kr?vel AV, Olsen LC (2004) Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev Biol 271: 190–197. doi: 10.1016/j.ydbio.2004.04.004
[20]  Kr?vel AV, Olsen LC (2002) Expression of a vas EGFP transgene in primordial germ cells of the zebrafish. Mech Dev 116: 141–150. doi: 10.1016/s0925-4773(02)00154-5
[21]  Tanaka M (2001) Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein fluorescence exclusively in germ cells: A useful model to monitor germ cells in a live vertebrate. Proc Natl Acad Sci U S A 98: 2544–2549. doi: 10.1073/pnas.041315498
[22]  Yoshizaki G, Takeuchi Y, Sakatani S, Takeuchi T (2000) Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int J Dev Biol 44: 323–326. doi: 10.1002/(sici)1098-2795(200004)55:4<364::aid-mrd2>3.3.co;2-#
[23]  Kobayashi T, Takeuchi Y, Yoshizaki G, Takeuchi T (2003) Cryopreservation of trout primordial germ cells. Fish Physiol Biochem 28: 479–480. doi: 10.1023/b:fish.0000030634.37486.fa
[24]  Kobayashi T, Takeuchi Y, Takeuchi T, Yoshizaki G (2007) Generation of viable fish from cryopreserved primordial germ cells. Mol Reprod Dev 74: 207–213. doi: 10.1002/mrd.20577
[25]  Takeuchi Y, Yoshizaki G, Takeuchi T (2003) Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol Reprod 69: 1142–1149. doi: 10.1095/biolreprod.103.017624
[26]  Saito T, Goto-Kazeto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78: 159–166. doi: 10.1095/biolreprod.107.060038
[27]  Saito T, Goto-Kazeto R, Fujimoto T, Kawakami Y, Arai K, et al. (2010) Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int J Dev Biol 54: 1481–1486. doi: 10.1387/ijdb.103111ts
[28]  Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A 103: 2725–2729. doi: 10.1073/pnas.0509218103
[29]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evo 28: 2731–2739. doi: 10.1093/molbev/msr121
[30]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[31]  Feng Z-F, Zhang Z-F, Shao M-Y, Zhu W (2011) Developmental expression pattern of the Fc-vasa-like gene, gonadogenesis and development of germ cell in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture 314: 202–209. doi: 10.1016/j.aquaculture.2011.02.017
[32]  Gao J, Wang J, Jiang J, Fan L, Wang W, et al. (2013) Identification and characterization of a nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene 531: 411–421. doi: 10.1016/j.gene.2013.08.030
[33]  Wang X, Jiang J, Gao J, Liu J, Qi J, et al. (2013) Identification of two novel female-specific DNA sequences in half-smooth tongue sole, Cynoglossus semilaevis.. Aquaculture 388–391: 49–53. doi: 10.1016/j.aquaculture.2013.01.024
[34]  Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein binding RNA through RGG box. EMBO J 11: 2655–2664.
[35]  Liang L, Diehl-Jones W, Lasko P (1994) Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120: 1201–1211.
[36]  Wolke U, Weidinger G, Koprunner M, Raz E (2002) Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr Biol 12: 289–294. doi: 10.1016/s0960-9822(02)00679-6
[37]  Rozen F, Pelletier J, Trachsel H, Sonenberg N (1989) A lysine substitution in the ATP-binding site of eucaryotic initiation factor 4A abrogates nucleotide-binding activity. Mol Cell Biol 9: 4061–4063.
[38]  Blum S, Schmid SR, Pause A, Buser P, Linder P, et al. (1992) ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89: 7664–7668. doi: 10.1073/pnas.89.16.7664
[39]  Pugh GE, Nicol SM, Fuller-Pace FV (1999) Interaction of the Escherichia coli DEAD box protein DbpA with 23 S ribosomal RNA. J Mol Biol 292: 771–778. doi: 10.1006/jmbi.1999.3112
[40]  Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12: 123–133. doi: 10.1016/s0959-440x(02)00298-1
[41]  Tanner NK, Cordin O, Banroques J, Doere M, Linder P (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11: 127–138. doi: 10.1016/s1097-2765(03)00006-6
[42]  Cordin O, Tanner NK, Doere M, Linder P, Banroques J (2004) The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 23: 2478–2487. doi: 10.1038/sj.emboj.7600272
[43]  Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11: 2643–2654.
[44]  Pause A, Methot N, Sonenberg N (1993) The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cell Biol 13: 6789–6798.
[45]  Benz J, Trachsel H, Baumann U (1999) Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae—the prototype of the DEAD box protein family. Structure 7: 671–679. doi: 10.1016/s0969-2126(99)80088-4
[46]  Shi H, Cordin O, Minder CM, Linder P, Xu RM (2004) Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc Natl Acad Sci U S A 101: 17628–17633. doi: 10.1073/pnas.0408172101
[47]  Rogers GW Jr, Komar AA, Merrick WC (2002) eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 72: 307–331. doi: 10.1016/s0079-6603(02)72073-4
[48]  Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125: 287–300. doi: 10.1016/j.cell.2006.01.054
[49]  Mallam AL, Del Campo M, Gilman B, Sidote DJ, Lambowitz AM (2012) Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490: 121–125. doi: 10.1038/nature11402
[50]  Schwer B, Meszaros T (2000) RNA helicase dynamics in pre-mRNA splicing. EMBO J 19: 6582–6591. doi: 10.1093/emboj/19.23.6582
[51]  Rocak S, Emery B, Tanner NK, Linder P (2005) Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs. Nucleic Acids Res 33: 999–1009. doi: 10.1093/nar/gki244
[52]  Caruthers JM, Johnson ER, McKay DB (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc Natl Acad Sci U S A 97: 13080–13085. doi: 10.1073/pnas.97.24.13080
[53]  Yang Q, Jankowsky E (2006) The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat Struct Mol Biol 13: 981–986. doi: 10.1038/nsmb1165
[54]  Yang Q, Del Campo M, Lambowitz AM, Jankowsky E (2007) DEAD-box proteins unwind duplexes by local strand separation. Mol Cell 28: 253–263. doi: 10.1016/j.molcel.2007.08.016
[55]  Fujimura K, A. Conte M, D. Kocher T (2011) Circular DNA intermediate in the duplication of Nile tilapia vasa genes. PLoS ONE 6: e29477. doi: 10.1371/journal.pone.0029477
[56]  Chen S, Zhang G, Shao C, Huang Q, Liu G, et al. (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46: 253–260. doi: 10.1038/ng.2890
[57]  Xu H, Gui J, Hong Y (2005) Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn 233: 872–882. doi: 10.1002/dvdy.20410
[58]  Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2000) Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev 99: 139–142. doi: 10.1016/s0925-4773(00)00464-0
[59]  Nagasawa K, Takeuchi Y, Miwa M, Higuchi K, Morita T, et al. (2008) cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis.. Fish Sci 75: 71–79. doi: 10.1007/s12562-008-0021-9
[60]  Raghuveer K, Senthilkumaran B (2010) Cloning and differential expression pattern of vasa in the developing and recrudescing gonads of catfish, Clarias gariepinus. Comp Biochem Physiol A Mol Integr Physiol 157: 79–85. doi: 10.1016/j.cbpa.2010.04.017
[61]  Shinomiya A, Tanaka M, Kobayashi T, Nagahama Y, Hamaguchi S (2000) The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev Growth Differ 42: 317–326. doi: 10.1046/j.1440-169x.2000.00521.x
[62]  Gavis ER, Lunsford L, Bergsten SE, Lehmann R (1996) A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122: 2791–2800.
[63]  Markussen FH, Breitwieser W, Ephrussi A (1997) Efficient translation and phosphorylation of Oskar require Oskar protein and the RNA helicase Vasa. Cold Spring Harb Symp Quant Biol 62: 13–17.
[64]  Tomancak P, Guichet A, Zavorszky P, Ephrussi A (1998) Oocyte polarity depends on regulation of gurken by Vasa. Development 125: 1723–1732.
[65]  Ikenishi K, Tanaka TS (2000) Spatio-temporal expression of Xenopus vasa homolog, XVLG1, in oocytes and embryos: the presence of XVLG1 RNA in somatic cells as well as germline cells. Dev Growth Differ 42: 95–103. doi: 10.1046/j.1440-169x.2000.00493.x
[66]  Thomsen S, Anders S, Janga SC, Huber W, Alonso CR (2010) Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol 11: R93. doi: 10.1186/gb-2010-11-9-r93
[67]  Siddiqui NU, Li X, Luo H, Karaiskakis A, Hou H, et al. (2012) Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells. Genome Biol 13: R11. doi: 10.1186/gb-2012-13-2-r11
[68]  Yang H, Zhou Y, Gu J, Xie S, Xu Y, et al. (2013) Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae. PLoS ONE 8: e64058. doi: 10.1371/journal.pone.0064058
[69]  Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, et al. (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21: 1328–1338. doi: 10.1101/gr.116012.110
[70]  Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J (2011) The zebrafish transcriptome during early development. BMC Dev Biol 11: 30. doi: 10.1186/1471-213x-11-30
[71]  Mathavan S, Lee SGP, Mak A, Miller LD, Murthy KRK, et al. (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genetics 1: e29. doi: 10.1371/journal.pgen.0010029
[72]  Lin F, Xu S, Ma D, Xiao Z, Zhao C, et al. (2012) Germ line specific expression of a vasa homologue gene in turbot (Scophthalmus maximus): evidence for vasa localization at cleavage furrows in euteleostei. Mol Reprod Dev 79: 803–813. doi: 10.1002/mrd.22120
[73]  Herpin A, Rohr S, Riedel D, Kluever N, Raz E, et al. (2007) Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev Biol 7: 3. doi: 10.1186/1471-213x-7-3
[74]  Fairchild EA, Rennels N, Howell WH, Wells RE (2007) Gonadal development and differentiation in cultured juvenile winter flounder, Pseudopleuronectes americanus. J World Aquac Soc 38: 114–121. doi: 10.1111/j.1749-7345.2006.00079.x
[75]  Ma X K, Liu X Z, Wen H S, Xu Y J, Zhang L J (2006) Histological observation on gonadal sex differentiation in Cynoglossus semilaevis Gunther. Mar. Fish. Res 27: 55–60.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133