全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Parametric Response Maps of Perfusion MRI May Identify Recurrent Glioblastomas Responsive to Bevacizumab and Irinotecan

DOI: 10.1371/journal.pone.0090535

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Perfusion weighted imaging (PWI) can be used to measure key aspects of tumor vascularity in vivo and recent studies suggest that perfusion imaging may be useful in the early assessment of response to angiogenesis inhibitors. Aim of this work is to compare Parametric Response Maps (PRMs) with the Region Of Interest (ROI) approach in the analysis of tumor changes induced by bevacizumab and irinotecan in recurrent glioblastomas (rGBM), and to evaluate if changes in tumor blood volume measured by perfusion MRI may predict clinical outcome. Methods 42 rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. Relative cerebral blood volume (rCBV) variation after 8 weeks of treatment was calculated through semi-automatic ROI placement in the same anatomic region as in baseline. Alternatively, rCBV variations with respect to baseline were calculated into the evolving tumor region using a voxel-by-voxel difference. PRMs were created showing where rCBV significantly increased, decreased or remained unchanged. Results An increased blood volume in PRM (PRMCBV+) higher than 18% (first quartile) after 8 weeks of treatment was associated with increased progression free survival (PFS; 24 versus 13 weeks, p = 0.045) and overall survival (OS; 38 versus 25 weeks, p = 0.016). After 8 weeks of treatment ROI analysis showed that mean rCBV remained elevated in non responsive patients (4.8±0.9 versus 5.1±1.2, p = 0.38), whereas decreased in responsive patients (4.2±1.3 versus 3.8±1.6 p = 0.04), and re-increased progressively when patients approached tumor progression. Conclusions Our data suggest that PRMs can provide an early marker of response to antiangiogenic treatment and warrant further confirmation in a larger cohort of GBM patients.

References

[1]  McNamara MG, Mason WP (2012) Antiangiogenic therapies in glioblastoma multiforme. Expert Rev Anticancer Ther 12: 643–654. doi: 10.1586/era.12.35
[2]  Specenier P (2012) Bevacizumab in glioblastoma multiforme. Expert Rev Anticancer Ther 12: 9–18. doi: 10.1586/era.11.179
[3]  Lu KV, Bergers G (2013) Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2: 49–65. doi: 10.2217/cns.12.36
[4]  Maru D, Venook AP, Ellis LM (2013) Predictive biomarkers for bevacizumab: Are we there yet? Clin Cancer Res 19: 2824–2827. doi: 10.1158/1078-0432.ccr-12-3409
[5]  Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, et al. (2012) Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 72: 402–407. doi: 10.1158/0008-5472.can-11-2464
[6]  Cha S, Knopp EA, Johnson G, Litt A, Glass J, et al. (2000) Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 21: 881–890.
[7]  Sawlani RN, Raizer J, Horowitz SW, Shin W, Grimm SA, et al. (2010) Glioblastoma: A method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging—pilot study. Radiology 255: 622–628. doi: 10.1148/radiol.10091341
[8]  Galban CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, et al. (2009) The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 15: 572–576. doi: 10.1038/nm.1919
[9]  Tsien C, Galban CJ, Chenevert TL, Johnson TD, Hamstra DA, et al. (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28: 2293–2299. doi: 10.1200/jco.2009.25.3971
[10]  Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 28: 761–766.
[11]  Cuppini L, Calleri A, Bruzzone MG, Prodi E, Anghileri E, et al.. (2013) Prognostic value of CD109+ circulating endothelial cells in recurrent glioblastomas treated with bevacizumab and irinotecan. PLoS One In press.
[12]  Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996. doi: 10.1056/nejmoa043330
[13]  Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, et al. (2010) Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 28: 1963–1972. doi: 10.1200/jco.2009.26.3541
[14]  Pope WB, Lai A, Mehta R, Kim HJ, Qiao J, et al. (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32: 882–889. doi: 10.3174/ajnr.a2385
[15]  Chamberlain MC (2011) Radiographic patterns of relapse in glioblastoma. J Neurooncol 101: 319–323. doi: 10.1007/s11060-010-0251-4
[16]  Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, et al. (2008) Gliomas: Predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247: 490–498. doi: 10.1148/radiol.2472070898
[17]  Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, et al. (2005) Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102: 5524–5529. doi: 10.1073/pnas.0501532102
[18]  Van Meter ME, Kim ES (2010) Bevacizumab: Current updates in treatment. Curr Opin Oncol 22: 586–591. doi: 10.1097/cco.0b013e32833edc0c
[19]  Barajas RF, Jr, Cha S (2012) Imaging diagnosis of brain metastasis. Prog Neurol Surg 25: 55–73. doi: 10.1159/000331174
[20]  Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med 7: 987–989.
[21]  Maier SE, Sun Y, Mulkern RV (2010) Diffusion imaging of brain tumors. NMR Biomed 23: 849–864. doi: 10.1002/nbm.1544
[22]  Pope WB, Qiao XJ, Kim HJ, Lai A, Nghiemphu P, et al. (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: A multi-center study. J Neurooncol 108: 491–498. doi: 10.1007/s11060-012-0847-y
[23]  Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: Does lower ADC predict a worse prognosis independent of grade of tumor?—a meta-analysis. AJR Am J Roentgenol 200: 624–629. doi: 10.2214/ajr.12.8679
[24]  Hashimoto M, Ichihara M, Watanabe T, Kawai K, Koshikawa K, et al. (2004) Expression of CD109 in human cancer. Oncogene 23: 3716–3720. doi: 10.1038/sj.onc.1207418
[25]  Ratai EM, Zhang Z, Snyder BS, Boxerman JL, Safriel Y, et al. (2013) Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677. Neuro Oncol 15: 936–944. doi: 10.1093/neuonc/not044
[26]  Takano S, Kimu H, Tsuda K, Osuka S, Nakai K, et al.. (2013) Decrease in the apparent diffusion coefficient in peritumoral edema for the assessment of recurrent glioblastoma treated by bevacizumab. Acta Neurochir Suppl 118: 185–189.
[27]  Hu LS, Eschbacher JM, Dueck AC, Heiserman JE, Liu S, et al. (2012) Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 33: 69–76. doi: 10.3174/ajnr.a2743
[28]  Mills SJ, Soh C, O'Connor JP, Rose CJ, Buonaccorsi G, et al. (2010) Enhancing fraction in glioma and its relationship to the tumoral vascular microenvironment: A dynamic contrast-enhanced MR imaging study. AJNR Am J Neuroradiol 31: 726–731. doi: 10.3174/ajnr.a1925
[29]  Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, et al. (2000) Posttherapeutic intraaxial brain tumor: The value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21: 901–909.
[30]  Young R, Babb J, Law M, Pollack E, Johnson G (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26: 1053–1063. doi: 10.1002/jmri.21064
[31]  Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, et al. (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. PNAS,2013 Nov 110(47): 19059–64. doi: 10.1073/pnas.1318022110
[32]  Galban CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, et al. (2011) Prospective analysis of parametric response map-derived MRI biomarkers: Identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin Cancer Res 17: 4751–4760. doi: 10.1158/1078-0432.ccr-10-2098
[33]  Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 298–307. doi: 10.1038/nature10144

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133