全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Exploring the Use of Thermal Infrared Imaging in Human Stress Research

DOI: 10.1371/journal.pone.0090782

Full-Text   Cite this paper   Add to My Lib

Abstract:

High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints). Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol) in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers) did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

References

[1]  Shastri D, Merla A, Tsiamyrtzis P, Pavlidis I (2009) Imaging facial signs of neurophysiological responses. IEEE Trans Biomed Eng 56: 477–484. doi: 10.1109/tbme.2008.2003265
[2]  Merla A, Romani GL (2007) Thermal signatures of emotional arousal: a functional infrared imaging study. Conf Proc IEEE Eng Med Biol Soc 2007: 247–249. doi: 10.1109/iembs.2007.4352270
[3]  Pavlidis I, Eberhardt NL, Levine JA (2002) Seeing through the face of deception. Nature 415: 35. doi: 10.1038/415035a
[4]  Pavlidis I, Tsiamyrtzis P, Shastri D, Wesley A, Zhou Y, et al. (2012) Fast by nature - how stress patterns define human experience and performance in dexterous tasks. Sci Rep 2: 305. doi: 10.1038/srep00305
[5]  Ebisch SJ, Aureli T, Bafunno D, Cardone D, Romani GL, et al. (2012) Mother and child in synchrony: thermal facial imprints of autonomic contagion. Biol Psychol 89: 123–129. doi: 10.1016/j.biopsycho.2011.09.018
[6]  Anbar M (2002) Assessment of physiologic and pathologic radiative heat dissipation using dynamic infrared imaging. Ann N Y Acad Sci 972: 111–118. doi: 10.1111/j.1749-6632.2002.tb04560.x
[7]  Kawasaki H, Kaufman O, Damasio H, Damasio AR, Granner M, et al. (2001) Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat Neurosci 4: 15–16.
[8]  Gleeson M (1998) Temperature regulation during exercise. Int J Sports Med 19 Suppl 2S96–99. doi: 10.1055/s-2007-971967
[9]  McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886: 172–189. doi: 10.1016/s0006-8993(00)02950-4
[10]  Chien S (1967) Role of the sympathetic nervous system in hemorrhage. Physiol Rev 47: 214–288.
[11]  Cannon WB (1929) Organization for physiological homeostasis. Physiological Reviews 9: 399–431.
[12]  Haddy FJ, Overbeck HW, Daugherty RM Jr (1968) Peripheral vascular resistance. Annu Rev Med 19: 167–194. doi: 10.1146/annurev.me.19.020168.001123
[13]  Pearce WJ, D'Alecy LG (1980) Hemorrhage-induced cerebral vasoconstriction in dogs. Stroke 11: 190–197. doi: 10.1161/01.str.11.2.190
[14]  Vatner SF (1974) Effects of hemorrhage on regional blood flow distribution in dogs and primates. J Clin Invest 54: 225–235. doi: 10.1172/jci107757
[15]  Calvin KL, Duffy VG (2007) Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement. Occupational Ergonomics 7: 83–94.
[16]  Hines EA, Brown GE (1932) A standard stimulus for measuring vasomotor reactions: its application in the study of hypertension. Proc Staff Meet Mayo Clin 7: 332.
[17]  Kirschbaum C, Pirke KM, Hellhammer DH (1993) The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28: 76–81. doi: 10.1159/000119004
[18]  Mourot L, Bouhaddi M, Regnard J (2009) Effects of the cold pressor test on cardiac autonomic control in normal subjects. Physiol Res 58: 83–91.
[19]  Schwabe L, Haddad L, Schachinger H (2008) HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33: 890–895. doi: 10.1016/j.psyneuen.2008.03.001
[20]  al'Absi M, Petersen KL, Wittmers LE (2002) Adrenocortical and hemodynamic predictors of pain perception in men and women. Pain 96: 197–204. doi: 10.1016/s0304-3959(01)00447-x
[21]  Engert V, Vogel S, Efanov SI, Duchesne A, Corbo V, et al. (2011) Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology 36: 1294–1302. doi: 10.1016/j.psyneuen.2011.02.018
[22]  Foley P, Kirschbaum C (2010) Human hypothalamus-pituitary-adrenal axis responses to acute psychosocial stress in laboratory settings. Neurosci Biobehav Rev 35: 91–96. doi: 10.1016/j.neubiorev.2010.01.010
[23]  Schommer NC, Hellhammer DH, Kirschbaum C (2003) Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosom Med 65: 450–460. doi: 10.1097/01.psy.0000035721.12441.17
[24]  Kajantie E, Phillips DI (2006) The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology 31: 151–178. doi: 10.1016/j.psyneuen.2005.07.002
[25]  von Baeyer CL, Piira T, Chambers CT, Trapanotto M, Zeltzer LK (2005) Guidelines for the cold pressor task as an experimental pain stimulus for use with children. J Pain 6: 218–227. doi: 10.1016/j.jpain.2005.01.349
[26]  Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130: 355–391. doi: 10.1037/0033-2909.130.3.355
[27]  Kudielka BM, Schommer NC, Hellhammer DH, Kirschbaum C (2004) Acute HPA axis responses, heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology 29: 983–992. doi: 10.1016/j.psyneuen.2003.08.009
[28]  Rohleder N, Nater UM, Wolf JM, Ehlert U, Kirschbaum C (2004) Psychosocial stress-induced activation of salivary alpha-amylase: an indicator of sympathetic activity? Ann N Y Acad Sci 1032: 258–263. doi: 10.1196/annals.1314.033
[29]  Nhan BR, Chau T (2010) Classifying affective states using thermal infrared imaging of the human face. IEEE Trans Biomed Eng 57: 979–987. doi: 10.1109/tbme.2009.2035926
[30]  Kuraoka K, Nakamura K (2011) The use of nasal skin temperature measurements in studying emotion in macaque monkeys. Physiol Behav 102: 347–355. doi: 10.1016/j.physbeh.2010.11.029
[31]  Nakanishi R, Imai-Matsumura K (2008) Facial skin temperature decreases in infants with joyful expression. Infant Behav Dev 31: 137–144. doi: 10.1016/j.infbeh.2007.09.001
[32]  Dowdall N, Pavlidis I, Tsiamyrtzis P (2007) Coalitional tracking. Computer Vision and Image Understanding: 205–219.
[33]  Iriarte J, Urrestarazu E, Valencia M, Alegre M, Malanda A, et al. (2003) Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol 20: 249–257. doi: 10.1097/00004691-200307000-00004
[34]  Task Force of the European Society for Cardiology TNASoP and Electrophysiology (1996) Heart Rate Variability: Standards of measurements, physiological interpretation, and clinical use. Circulation 93: 1043–1065. doi: 10.1161/01.cir.93.5.1043
[35]  Malik M (1995) Geometrical methods for heart rate variability assessment; Malik M, Camm AJ, editors. Armonk NY: Futura Publishing Company.
[36]  Kistler A, Mariauzouls C, von Berlepsch K (1998) Fingertip temperature as an indicator for sympathetic responses. Int J Psychophysiol 29: 35–41. doi: 10.1016/s0167-8760(97)00087-1
[37]  Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34: 486–496. doi: 10.1016/j.psyneuen.2009.01.014
[38]  van Stegeren A, Rohleder N, Everaerd W, Wolf OT (2006) Salivary alpha amylase as marker for adrenergic activity during stress: effect of betablockade. Psychoneuroendocrinology 31: 137–141. doi: 10.1016/j.psyneuen.2005.05.012
[39]  Rohleder N, Nater UM (2009) Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology 34: 469–485. doi: 10.1016/j.psyneuen.2008.12.004
[40]  Lorentz K, Gutschow B, Renner F (1999) Evaluation of a direct alpha-amylase assay using 2-chloro-4-nitrophenyl-alpha-D-maltotrio?side. Clin Chem Lab Med 37: 1053–1062. doi: 10.1515/cclm.1999.154
[41]  Winn-Deen ES, David H, Sigler G, Chavez R (1988) Development of a direct assay for alpha-amylase. Clin Chem 34: 2005–2008.
[42]  Dressendorfer RA, Kirschbaum C, Rohde W, Stahl F, Strasburger CJ (1992) Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. J Steroid Biochem Mol Biol 43: 683–692. doi: 10.1016/0960-0760(92)90294-s
[43]  Miller R, Plessow F (2013) Transformation techniques for cross-sectional and longitudinal endocrine data: Application to salivary cortisol concentrations. Psychoneuroendocrinology 38: 941–946. doi: 10.1016/j.psyneuen.2012.09.013
[44]  Ivanciuc O, Braun W (2007) Robust quantitative modeling of peptide binding affinities for MHC molecules using physical-chemical descriptors. Protein Pept Lett 14: 903–916. doi: 10.2174/092986607782110257
[45]  Mur M, Bandettini PA, Kriegeskorte N (2009) Revealing representational content with pattern-information fMRI—an introductory guide. Soc Cogn Affect Neurosci 4: 101–109. doi: 10.1093/scan/nsn044
[46]  Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45: S199–209. doi: 10.1016/j.neuroimage.2008.11.007
[47]  Misaki M, Kim Y, Bandettini PA, Kriegeskorte N (2010) Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage 53: 103–118. doi: 10.1016/j.neuroimage.2010.05.051
[48]  Cohen S, Hamrick N, Rodriguez MS, Feldman PJ, Rabin BS, et al. (2000) The stability of and intercorrelations among cardiovascular, immune, endocrine, and psychological reactivity. Ann Behav Med 22: 171–179. doi: 10.1007/bf02895111
[49]  Buchanan TW, al'Absi M, Lovallo WR (1999) Cortisol fluctuates with increases and decreases in negative affect. Psychoneuroendocrinology 24: 227–241. doi: 10.1016/s0306-4530(98)00078-x
[50]  Schlotz W, Kumsta R, Layes I, Entringer S, Jones A, et al. (2008) Covariance between psychological and endocrine responses to pharmacological challenge and psychosocial stress: a question of timing. Psychosom Med 70: 787–796. doi: 10.1097/psy.0b013e3181810658
[51]  Hellhammer DH, Wust S, Kudielka BM (2009) Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34: 163–171. doi: 10.1016/j.psyneuen.2008.10.026
[52]  Dallman MF, Bhatnagar S, Viau V (2000) Hypothalamo-pituitary-adrenal axis. In: Fink G, editor. Encyclopedia of Stress. San Diego: Academic Press.
[53]  Fries E, Dettenborn L, Kirschbaum C (2009) The cortisol awakening response (CAR): facts and future directions. Int J Psychophysiol 72: 67–73. doi: 10.1016/j.ijpsycho.2008.03.014
[54]  Lovallo WR, Thomas TL (2000) Stress hormones in psychophysiological research: emotional, behavioral, and cognitive implications. In: Cacioppo JT, Tassinary LG, Bersnton GG, editors. Handbook of Psychophysiology. New York: Cambridge University Press pp. 342–367.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133