Background In-person structured observation is considered the best approach for measuring hand hygiene behavior, yet is expensive, time consuming, and may alter behavior. Video surveillance could be a useful tool for objectively monitoring hand hygiene behavior if validated against current methods. Methods Student hand cleaning behavior was monitored with video surveillance and in-person structured observation, both simultaneously and separately, at four primary schools in urban Kenya over a study period of 8 weeks. Findings Video surveillance and in-person observation captured similar rates of hand cleaning (absolute difference <5%, p = 0.74). Video surveillance documented higher hand cleaning rates (71%) when at least one other person was present at the hand cleaning station, compared to when a student was alone (48%; rate ratio = 1.14 [95% CI 1.01–1.28]). Students increased hand cleaning rates during simultaneous video and in-person monitoring as compared to single-method monitoring, suggesting reactivity to each method of monitoring. This trend was documented at schools receiving a handwashing with soap intervention, but not at schools receiving a sanitizer intervention. Conclusion Video surveillance of hand hygiene behavior yields results comparable to in-person observation among schools in a resource-constrained setting. Video surveillance also has certain advantages over in-person observation, including rapid data processing and the capability to capture new behavioral insights. Peer influence can significantly improve student hand cleaning behavior and, when possible, should be exploited in the design and implementation of school hand hygiene programs.
References
[1]
Ram P (2013) Practical Guidance for Measuring Handwashing Behavior: 2013 Update: 1–36.
[2]
Manun'Ebo M, Cousens S, Haggerty P, Kalengaie M, Ashworth A, et al. (1997) Measuring hygiene practices: a comparison of questionnaires with direct observations in rural Zaire. Tropical Medicine & International Health 2: 1015–1021 doi:–10.1046/j.1365–3156.1997.d01-180.x.
[3]
Stanton BF, Clemens JD, Aziz KMA, Rahman M (1987) Twenty-four-hour recall, Knowledge-attitude-practice questionnaire, and direct observations of sanitary practices: a comparative study. Bulletin of World Health Organization 65: 217–222.
[4]
Luby SP, Halder AK, Tronchet C, Akhter S, Bhuiya A, et al. (2009) Household Characteristics Associated with Handwashing with Soap in Rural Bangladesh. Am J Trop Med Hyg 81: 882–887 doi:10.4269/ajtmh.2009.09-0031.
[5]
Ram PK, Halder AK, Granger SP, Jones T, Hall P, et al. (2010) Is Structured Observation a Valid Technique to Measure Handwashing Behavior? Use of Acceleration Sensors Embedded in Soap to Assess Reactivity to Structured Observation. Am J Trop Med Hyg 83: 1070–1076 doi:10.4269/ajtmh.2010.09-0763.
[6]
Cousens S, Kanki B, Toure S, Diallo I, Curtis V (1996) Reactivity and repeatability of hygiene behaviour: Structured observations from Burkina Faso. Soc Sci Med 43: 1299–1308. doi: 10.1016/0277-9536(95)00380-0
[7]
Gittelsohn J, Shankar AV, West KP, Ram RM, Gnywali T (1997) Estimating reactivity in direct observation studies of health behaviors. Human organization 56: 182–189.
[8]
McCarney R, Warner J, Iliffe S, van Haselen R, Griffin M, et al. (2007) The Hawthorne Effect: a randomised, controlled trial. BMC Med Res Methodol 7: 30 doi:10.1186/1471-2288-7-30.
[9]
Pan S-C, Tien K-L, Hung I-C, Lin Y-J, Sheng W-H, et al. (2013) Compliance of Health Care Workers with Hand Hygiene Practices: Independent Advantages of Overt and Covert Observers. PLoS ONE 8: e53746 doi:10.1371/journal.pone.0053746.s002.
[10]
Nishimura S, Kagehira M, Kono F, Nishimura M, Taenaka N (1999) Handwashing before entering the intensive care unit: what we learned from continuous video-camera surveillance. Am J Infect Control 27: 367–369. doi: 10.1016/s0196-6553(99)70058-1
[11]
Brown J, Froese-Fretz A, Luckey D, Todd JK (1996) High rate of hand contamination and low rate of hand washing before infant contact in a neonatal intensive care unit. The Pediatric Infectious disease journal 15: 908–910. doi: 10.1097/00006454-199610000-00016
[12]
Zhang L, Chen J, Chang L, Xu M (2009) Hand Hygiene Management by Video Monitoring in Neonatal Intensive Care Unit. Chinese Journal of Nosocomiology.
[13]
Armellino D, Hussain E, Schilling ME, Senicola W, Eichorn A, et al. (2011) Using High-Technology to Enforce Low-Technology Safety Measures: The Use of Third-party Remote Video Auditing and Real-time Feedback in Healthcare. Clinical Infectious Diseases 54: 1–7 doi:10.1093/cid/cir773.
[14]
Anderson M, Weese JS (2012) Video observation of hand hygiene practices at a petting zoo and the impact of hand hygiene interventions. Epidemiol Infect 140: 182. doi: 10.1017/s095026881100029x
[15]
Jay LS, Comar D, Govenlock LD (1999) A video study of Australian domestic food-handling practices. J Food Prot 62: 1285–1296.
[16]
Pickering AJ, Davis J, Blum AG, Scalmanini J, Oyier B, et al.. (2013) Access to Waterless Hand Sanitizer Improves Student Hand Hygiene Behavior in Primary Schools in Nairobi, Kenya. American Journal of Tropical Medicine and Hygiene. doi:10.4269/ajtmh.13-0008.
[17]
Russell A, Russell G, Midwinter D (1992) Observer influences on mothers and fathers: Self-reported influence during a home observation. Merrill-Palmer Quarterly (1982-): 263–283.
[18]
Pedersen DM, Keithly S, Brady K (1986) Effect of an Observer on Conformity to Handwasing Norm. Perceptual and Motor Skills 62: 169–170. doi: 10.2466/pms.1986.62.1.169
[19]
Maury E, Moussa N, Lakermi C, Barbut F, Offenstadt G (2006) Compliance of health care workers to hand hygiene: awareness of being observed is important. Intensive Care Med 32: 2088–2089 doi:10.1007/s00134-006-0398-9.
[20]
Drankiewicz D, Dundes L (2003) Handwashing among female college students. Am J Infect Control 31: 67–71 doi:10.1067/mic.2003.6.
[21]
Curtis VA, Danquah LO, Aunger RV (2009) Planned, motivated and habitual hygiene behaviour: an eleven country review. Health Educ Res: cyp002. doi:10.1093/her/cyp002.
[22]
O'Reilly CE, Freeman MC, Ravani M, Migele J, Mwaki A, et al.. (2007) The impact of a school-based safe water and hygiene programme on knowledge and practices of students and their parents: Nyanza Province, western Kenya. Epidemiol Infect.