全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

DOI: 10.1371/journal.pone.0092940

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ~60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.

References

[1]  WHO (2012) Fact sheet N°318. Oral Health: World Health Organization.
[2]  Petersen PE (2009) Global policy for improvement of oral health in the 21st century–implications to oral health research of World Health Assembly 2007, World Health Organization. Community Dent Oral Epidemiol 37: 1–8. doi: 10.1111/j.1600-0528.2008.00448.x
[3]  Bagramian RA, Garcia-Godoy F, Volpe AR (2009) The global increase in dental caries. A pending public health crisis. Am J Dent 22: 3–8.
[4]  Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8: 263–271.
[5]  Hojo S, Takahashi N, Yamada T (1991) Acid profile in carious dentin. J Dent Res 70: 182–186. doi: 10.1177/00220345910700030501
[6]  Kawasaki K, Featherstone JD (1997) Effects of collagenase on root demineralization. J Dent Res 76: 588–595. doi: 10.1177/00220345970760011001
[7]  Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149: 279–294. doi: 10.1099/mic.0.26082-0
[8]  Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, et al. (2010) The human oral microbiome. J Bacteriol 192: 5002–5017. doi: 10.1128/jb.00542-10
[9]  Loesche WJ, Grenier E (1976) Detection of Streptococcus mutans in plaque samples by the direct fluorescent antibody test. J Dent Res 55: A87–93. doi: 10.1177/002203457605500127011
[10]  Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50: 353–380.
[11]  van Houte J (1994) Role of micro-organisms in caries etiology. J Dent Res 73: 672–681.
[12]  Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44: 331–384.
[13]  Loesche WJ, Eklund S, Earnest R, Burt B (1984) Longitudinal investigation of bacteriology of human fissure decay: epidemiological studies in molars shortly after eruption. Infect Immun 46: 765–772.
[14]  Talbman MA, Smith DJ (1974) Effects of local immunization with Streptococcus mutans on induction of salivary immunoglobulin A antibody and experimental dental caries in rats. Infect Immun 9: 1079–1091.
[15]  Coenye T, Honraet K, Rigole P, Nadal Jimenez P, Nelis HJ (2007) In vitro inhibition of Streptococcus mutans biofilm formation on hydroxyapatite by subinhibitory concentrations of anthraquinones. Antimicrob Agents Chemother 51: 1541–1544. doi: 10.1128/aac.00999-06
[16]  Klein JP, Scholler M (1988) Recent advances in the development of a Streptococcus mutans vaccine. Eur J Epidemiol 4: 419–425. doi: 10.1007/bf00146392
[17]  Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33: 248–255. doi: 10.1111/j.1600-0528.2005.00232.x
[18]  Boyar RM, Thylstrup A, Holmen L, Bowden GH (1989) The microflora associated with the development of initial enamel decalcification below orthodontic bands in vivo in children living in a fluoridated-water area. J Dent Res 68: 1734–1738. doi: 10.1177/00220345890680120301
[19]  Macpherson LM, MacFarlane TW, Stephen KW (1990) An intra-oral appliance study of the plaque microflora associated with early enamel demineralization. J Dent Res 69: 1712–1716. doi: 10.1177/00220345900690110201
[20]  Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, et al. (2012) Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 7: e47722. doi: 10.1371/journal.pone.0047722
[21]  Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med 13: 108–125. doi: 10.1177/154411130201300202
[22]  Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, et al. (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46: 1407–1417. doi: 10.1128/jcm.01410-07
[23]  Munson MA, Banerjee A, Watson TF, Wade WG (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42: 3023–3029. doi: 10.1128/jcm.42.7.3023-3029.2004
[24]  Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, et al. (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40: 1001–1009. doi: 10.1128/jcm.40.3.1001-1009.2002
[25]  Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, et al. (2010) Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol 48: 4121–4128. doi: 10.1128/jcm.01232-10
[26]  Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90: 294–303. doi: 10.1177/0022034510379602
[27]  Badet MC, Richard B, Dorignac G (2001) An in vitro study of the pH-lowering potential of salivary lactobacilli associated with dental caries. J Appl Microbiol 90: 1015–1018. doi: 10.1046/j.1365-2672.2001.01340.x
[28]  McLean JS, Fansler SJ, Majors PD, McAteer K, Allen LZ, et al. (2012) Identifying low pH active and lactate-utilizing taxa within oral microbiome communities from healthy children using stable isotope probing techniques. PLoS One 7: e32219. doi: 10.1371/journal.pone.0032219
[29]  Takahashi N, Yamada T (1999) Acid-induced acid tolerance and acidogenicity of non-mutans streptococci. Oral Microbiol Immunol 14: 43–48. doi: 10.1034/j.1399-302x.1999.140105.x
[30]  Bradshaw DJ, Marsh PD (1998) Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res 32: 456–462. doi: 10.1159/000016487
[31]  Yang F, Zeng X, Ning K, Liu KL, Lo CC, et al. (2012) Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6: 1–10. doi: 10.1038/ismej.2011.71
[32]  Ling Z, Kong J, Jia P, Wei C, Wang Y, et al. (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60: 677–690. doi: 10.1007/s00248-010-9712-8
[33]  Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, et al. (2012) The oral metagenome in health and disease. ISME J 6: 46–56. doi: 10.1038/ismej.2011.85
[34]  Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res 19: 1141–1152. doi: 10.1101/gr.085464.108
[35]  Hojo S, Komatsu M, Okuda R, Takahashi N, Yamada T (1994) Acid profiles and pH of carious dentin in active and arrested lesions. J Dent Res 73: 1853–1857.
[36]  Chhour KL, Nadkarni MA, Byun R, Martin FE, Jacques NA, et al. (2005) Molecular analysis of microbial diversity in advanced caries. J Clin Microbiol 43: 843–849. doi: 10.1128/jcm.43.2.843-849.2005
[37]  Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, et al. (2004) Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol 42: 3128–3136. doi: 10.1128/jcm.42.7.3128-3136.2004
[38]  Martin FE, Nadkarni MA, Jacques NA, Hunter N (2002) Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J Clin Microbiol 40: 1698–1704. doi: 10.1128/jcm.40.5.1698-1704.2002
[39]  Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, et al. (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38: e200. doi: 10.1093/nar/gkq873
[40]  Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, et al. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4: e1000255. doi: 10.1371/journal.pgen.1000255
[41]  Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148: 257–266.
[42]  Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, et al. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41: e1. doi: 10.1093/nar/gks808
[43]  Ahn J, Yang L, Paster BJ, Ganly I, Morris L, et al. (2011) Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One 6: e22788. doi: 10.1371/journal.pone.0022788
[44]  Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
[45]  Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639–641. doi: 10.1038/nmeth.1361
[46]  Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21: 494–504. doi: 10.1101/gr.112730.110
[47]  Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461. doi: 10.1093/bioinformatics/btq461
[48]  Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, et al. (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430: 551–554. doi: 10.1038/nature02649
[49]  Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703.
[50]  Schloss PD (2010) The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput Biol 6: e1000844. doi: 10.1371/journal.pcbi.1000844
[51]  Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267. doi: 10.1128/aem.00062-07
[52]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771.
[53]  Faith DP (1992) Conservation Evaluation and Phylogenetic Diversity. Biological Conservation 61: 1–10. doi: 10.1016/0006-3207(92)91201-3
[54]  Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222–227. doi: 10.1038/nature11053
[55]  Karpievitch YV, Hill EG, Leclerc AP, Dabney AR, Almeida JS (2009) An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++. PLoS One 4: e7087. doi: 10.1371/journal.pone.0007087
[56]  Knights D, Costello EK, Knight R (2011) Supervised classification of human microbiota. FEMS Microbiol Rev 35: 343–359. doi: 10.1111/j.1574-6976.2010.00251.x
[57]  Jiang W, Zhang J, Chen H (2013) Pyrosequencing analysis of oral microbiota in children with severe early childhood dental caries. Curr Microbiol 67: 537–542. doi: 10.1007/s00284-013-0393-7
[58]  Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9: 259. doi: 10.1186/1471-2180-9-259
[59]  Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, et al. (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6: 1176–1185. doi: 10.1038/ismej.2011.191
[60]  Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, et al. (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87: 1016–1020. doi: 10.1177/154405910808701104
[61]  Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, et al. (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4: 962–974. doi: 10.1038/ismej.2010.30
[62]  Huang X, Exterkate RA, Ten Cate JM (2012) Factors associated with alkali production from arginine in dental biofilms. J Dent Res 91: 1130–1134. doi: 10.1177/0022034512461652
[63]  Takahashi N, Saito K, Schachtele CF, Yamada T (1997) Acid tolerance and acid-neutralizing activity of Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 12: 323–328. doi: 10.1111/j.1399-302x.1997.tb00733.x
[64]  Takahashi N, Schachtele CF (1990) Effect of pH on the growth and proteolytic activity of Porphyromonas gingivalis and Bacteroides intermedius. J Dent Res 69: 1266–1269. doi: 10.1177/00220345900690060801
[65]  Downes J, Dewhirst FE, Tanner AC, Wade WG (2013) Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol 63: 1214–1218. doi: 10.1099/ijs.0.041376-0
[66]  Whiley RA, Russell RRB, Hardie JM, Beighton D (1988) Streptococcus-Downei Sp-Nov for Strains Previously Described as Streptococcus-Mutans Serotype-H. Int J Syst Bacteriol 38: 25–29. doi: 10.1099/00207713-38-1-25
[67]  Sansone C, Van Houte J, Joshipura K, Kent R, Margolis HC (1993) The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res 72: 508–516. doi: 10.1177/00220345930720020701
[68]  Van Houte J, Sansone C, Joshipura K, Kent R (1991) Mutans streptococci and non-mutans streptococci acidogenic at low pH, and in vitro acidogenic potential of dental plaque in two different areas of the human dentition. J Dent Res 70: 1503–1507. doi: 10.1177/00220345910700120601
[69]  Nascimento MM, Hofling JF, Goncalves RB (2004) Streptococcus mutans genotypes isolated from root and coronal caries. Caries Res 38: 454–463. doi: 10.1159/000079627
[70]  Wolff D, Frese C, Maier-Kraus T, Krueger T, Wolff B (2013) Bacterial biofilm composition in caries and caries-free subjects. Caries Res 47: 69–77. doi: 10.1159/000344022
[71]  Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: W475–478. doi: 10.1093/nar/gkr201

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133