[1] | Fowlkes CC, Hendriks CLL, Ker?nen SVE, Weber GH, Rübel O, et al. (2008) A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell 133: 364–374 doi:10.1016/j.cell.2008.01.053.
|
[2] | Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451: 535–540 doi:10.1038/nature06496.
|
[3] | Frise E, Hammonds AS, Celniker SE (2010) Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape. Mol Syst Biol 6: 345 doi:10.1038/msb.2009.102.
|
[4] | Buecker C, Wysocka J (2012) Enhancers as information integration hubs in development: lessons from genomics. Trends in Genetics 28: 276–284 doi:10.1016/j.tig.2012.02.008.
|
[5] | Naval Sanchez M, Potier D, Haagen L, Sánchez M, Munck S, et al. (2013) Comparative motif discovery combined with comparative transcriptomics yields accurate targetome and enhancer predictions. Genome Res 23: 74–88 doi:10.1101/gr.140426.112.
|
[6] | Herrmann C, Van de Sande B, Potier D, Aerts S (2012) i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic acids research 40: e114 doi:10.1093/nar/gks543.
|
[7] | Ganetzky B (2000) Genetic analysis of ion channel dysfunction in Drosophila. Kidney Int 57: 766–771 doi:10.1046/j.1523-1755.2000.00913.x.
|
[8] | Marban E (2002) Cardiac channelopathies. Nature 415: 213–218. doi: 10.1038/415213a
|
[9] | Cerrone M, Napolitano C, Priori SG (2012) Genetics of ion-channel disorders. Current opinion in cardiology 27: 242–252 doi:10.1097/HCO.0b013e328352429d.
|
[10] | Créton R, Kreiling JA, Jaffe LF (2000) Presence and roles of calcium gradients along the dorsal-ventral axis in Drosophila embryos. Dev Biol 217: 375–385 doi:10.1006/dbio.1999.9542.
|
[11] | Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, et al. (2009) The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 126: 737–751 doi:10.1016/j.mod.2009.04.005.
|
[12] | Pym ECG, Southall TD, Mee CJ, Brand AH, Baines RA (2006) The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons. Neural Dev 1: 3 doi:10.1186/1749-8104-1-3.
|
[13] | Wolfram V, Southall TD, Brand AH, Baines RA (2012) The LIM-homeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression. Neuron 75: 663–674 doi:10.1016/j.neuron.2012.06.015.
|
[14] | Romero MF, Henry D, Nelson S, Harte PJ, Dillon AK, et al. (2000) Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter. J Biol Chem 275: 24552–24559 doi:10.1074/jbc.M003476200.
|
[15] | Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO 3 - transporters. Pflugers Arch 447: 495–509 doi:10.1007/s00424-003-1180-2.
|
[16] | Romero MF, Chen A-P, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO?) transporters. Mol Aspects Med 34: 159–182 doi:10.1016/j.mam.2012.10.008.
|
[17] | FitzHarris G, Baltz JM (2009) Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction 138: 619–627 doi:10.1530/REP-09-0112.
|
[18] | Sciortino CM, Shrode LD, Fletcher BR, Harte PJ, Romero MF (2001) Localization of endogenous and recombinant Na(+)-driven anion exchanger protein NDAE1 from Drosophila melanogaster. Am J Physiol Cell Physiol 281: C449–C463.
|
[19] | Soleimani M, Burnham CE (2000) Physiologic and molecular aspects of the Na+:HCO3- cotransporter in health and disease processes. Kidney Int 57: 371–384 doi:10.1046/j.1523-1755.2000.00857.x.
|
[20] | Cordat E, Casey JR (2009) Bicarbonate transport in cell physiology and disease. Biochem J 417: 423–439 doi:10.1042/BJ20081634.
|
[21] | Parker MD, Qin X, Williamson RC, Toye AM, Boron WF (2012) HCO(3)(-)-independent conductance with a mutant Na(+)/HCO(3)(-) cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol (Lond) 590: 2009–2034 doi:10.1113/jphysiol.2011.224733.
|
[22] | Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83: 1183–1221 doi:10.1152/physrev.00010.2003.
|
[23] | Sinning A, Liebmann L, Kougioumtzes A, Westermann M, Bruehl C, et al. (2011) Synaptic glutamate release is modulated by the Na+ -driven Cl-/HCO? exchanger Slc4a8. J Neurosci 31: 7300–7311 doi:10.1523/JNEUROSCI.0269-11.2011.
|
[24] | Jacobs S, Ruusuvuori E, Sipil? ST, Haapanen A, Damkier HH, et al. (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105: 311–316 doi:10.1073/pnas.0705487105.
|
[25] | Gurnett CA, Veile R, Zempel J, Blackburn L, Lovett M, et al. (2008) Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation. Arch Neurol 65: 550–553 doi:10.1001/archneur.65.4.550.
|
[26] | Krepischi ACV, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, et al. (2010) Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia 51: 2457–2460 doi:10.1111/j.1528-1167.2010.02742.x.
|
[27] | Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, et al. (2007) Strong association of de novo copy number mutations with autism. Science 316: 445–449 doi:10.1126/science.1138659.
|
[28] | Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36: 174–184 doi:10.1016/j.tins.2012.11.008.
|
[29] | Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, et al. (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70: 1158–1166 doi:10.1001/jamaneurol.2013.136.
|
[30] | Winkelmann A, Maggio N, Eller J, Caliskan G, Semtner M, et al. (2014) Changes in neural network homeostasis trigger neuropsychiatric symptoms. J Clin Invest. doi:10.1172/JCI71472.
|
[31] | Barolo S, Carver L, Posakony J (2000) GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques 29: 726, 728, 730, 732.
|
[32] | Perrin L, Monier B, Ponzielli R, Astier M, Sémériva M (2004) Drosophila cardiac tube organogenesis requires multiple phases of Hox activity. Dev Biol 272: 419–431 doi:10.1016/j.ydbio.2004.04.036.
|
[33] | Amodio V, Tevy MF, Traina C, Ghosh TK, Capovilla M (2012) Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases. Developmental dynamics: an official publication of the American Association of Anatomists 241: 190–199 doi:10.1002/dvdy.22763.
|
[34] | Bernardoni R, Kammerer M, Vonesch J-L, Giangrande A (1999) Gliogenesis Depends on glide/gcm through Asymmetric Division of Neuroglioblasts. Developmental biology 216: 265–275 doi:10.1006/dbio.1999.9511.
|
[35] | Morisato D, Anderson KV (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29: 371–399 doi:10.1146/annurev.ge.29.120195.002103.
|
[36] | Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12: 393–416 doi:10.1146/annurev.cellbio.12.1.393.
|
[37] | Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo—shaping and transducing a morphogen gradient. Curr Biol 15: R887–R899 doi:10.1016/j.cub.2005.10.026.
|
[38] | Reeves GT, Stathopoulos A (2009) Graded dorsal and differential gene regulation in the Drosophila embryo. Cold Spring Harb Perspect Biol 1: a000836 doi:10.1101/cshperspect.a000836.
|
[39] | Schneider DS, Hudson KL, Lin TY, Anderson KV (1991) Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev 5: 797–807. doi: 10.1101/gad.5.5.797
|
[40] | Morisato D, Anderson KV (1994) The sp?tzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76: 677–688. doi: 10.1016/0092-8674(94)90507-x
|
[41] | Winans KA, Hashimoto C (1995) Ventralization of the Drosophila embryo by deletion of extracellular leucine-rich repeats in the Toll protein. Mol Biol Cell 6: 587–596. doi: 10.1091/mbc.6.5.587
|
[42] | Roth S, Stein D, Nüsslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59: 1189–1202. doi: 10.1016/0092-8674(89)90774-5
|
[43] | Rushlow CA, Han K, Manley JL, Levine M (1989) The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59: 1165–1177. doi: 10.1016/0092-8674(89)90772-1
|
[44] | Steward R (1989) Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59: 1179–1188. doi: 10.1016/0092-8674(89)90773-3
|
[45] | Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal development. Dev Cell 9: 449–462 doi:10.1016/j.devcel.2005.09.005.
|
[46] | Hong J-W, Hendrix DA, Papatsenko D, Levine MS (2008) How the Dorsal gradient works: insights from postgenome technologies. Proc Natl Acad Sci U S A 105: 20072–20076 doi:10.1073/pnas.0806476105.
|
[47] | Jiang J, Kosman D, Ip YT, Levine M (1991) The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev 5: 1881–1891. doi: 10.1101/gad.5.10.1881
|
[48] | Ip YT, Park RE, Kosman D, Yazdanbakhsh K, Levine M (1992) dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev 6: 1518–1530. doi: 10.1101/gad.6.8.1518
|
[49] | Jiang J, Levine M (1993) Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72: 741–752. doi: 10.1016/0092-8674(93)90402-c
|
[50] | Ip YT, Gridley T (2002) Cell movements during gastrulation: snail dependent and independent pathways. Curr Opin Genet Dev 12: 423–429. doi: 10.1016/s0959-437x(02)00320-9
|
[51] | Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M (2002) Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111: 687–701. doi: 10.1016/s0092-8674(02)01087-5
|
[52] | Kazemian M, Blatti C, Richards A, McCutchan M, Wakabayashi-Ito N, et al. (2010) Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials. PLoS Biol 8. doi:10.1371/journal.pbio.1000456.
|
[53] | Scuderi A, Letsou A (2005) Amnioserosa is required for dorsal closure in Drosophila. Dev Dyn 232: 791–800 doi:10.1002/dvdy.20306.
|
[54] | Narasimha M, Brown NH (2004) Novel functions for integrins in epithelial morphogenesis. Curr Biol 14: 381–385 doi:10.1016/j.cub.2004.02.033.
|
[55] | Fernández BG, Arias AM, Jacinto A (2007) Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mech Dev 124: 884–897 doi:10.1016/j.mod.2007.09.002.
|
[56] | Wada A, Kato K, Uwo MF, Yonemura S, Hayashi S (2007) Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev Biol 301: 340–349 doi:10.1016/j.ydbio.2006.09.020.
|
[57] | Lamka ML, Lipshitz HD (1999) Role of the amnioserosa in germ band retraction of the Drosophila melanogaster embryo. Dev Biol 214: 102–112 doi:10.1006/dbio.1999.9409.
|
[58] | Hummel T, Krukkert K, Roos J, Davis G, Kl?mbt C (2000) Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26: 357–370. doi: 10.1016/s0896-6273(00)81169-1
|
[59] | Jarial MS (1987) Ultrastructure of the anal organ of Drosophila larva with reference to ion transport. Tissue Cell 19: 559–575. doi: 10.1016/0040-8166(87)90048-6
|
[60] | Keyser P, Borge-Renberg K, Hultmark D (2007) The Drosophila NFAT homolog is involved in salt stress tolerance. Insect Biochem Mol Biol 37: 356–362 doi:10.1016/j.ibmb.2006.12.009.
|
[61] | Mehta A, Deshpande A, Missirlis F (2008) Genetic screening for novel Drosophila mutants with discrepancies in iron metabolism. Biochem Soc Trans 36: 1313–1316 doi:10.1042/BST0361313.
|