[1] | Stemmler MP (2008) Cadherins in development and cancer. Mol Biosyst 4: 835–850. doi: 10.1039/b719215k
|
[2] | del Valle I, Rudloff S, Carles A, Li Y, Liszewska E, et al. (2013) E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells. Development 140: 1684–1692. doi: 10.1242/dev.088690
|
[3] | Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, et al. (2009) E-Cadherin regulates neural stem cell self-renewal. J Neurosci 29: 3885–3896. doi: 10.1523/jneurosci.0037-09.2009
|
[4] | Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4: 118–132. doi: 10.1038/nrc1276
|
[5] | Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91: 8263–8267. doi: 10.1073/pnas.91.17.8263
|
[6] | Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A 92: 855–859. doi: 10.1073/pnas.92.3.855
|
[7] | Chou YF, Chen HH, Eijpe M, Yabuuchi A, Chenoweth JG, et al. (2008) The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 135: 449–461. doi: 10.1016/j.cell.2008.08.035
|
[8] | Becker SF, Langhe R, Huang C, Wedlich D, Kashef J (2012) Giving the right tug for migration: cadherins in tissue movements. Arch Biochem Biophys 524: 30–42. doi: 10.1016/j.abb.2012.02.013
|
[9] | Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22: 104–115. doi: 10.1016/j.devcel.2011.10.013
|
[10] | Pokutta S, Herrenknecht K, Kemmler R, Engel J (1994) Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem 223: 1019–1026. doi: 10.1111/j.1432-1033.1994.tb19080.x
|
[11] | Ozawa M, Engel J, Kemler R (1990) Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63: 1033–1038. doi: 10.1016/0092-8674(90)90506-a
|
[12] | Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91: 691–731. doi: 10.1152/physrev.00004.2010
|
[13] | Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, et al. (2010) Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proc Natl Acad Sci U S A 107: 17592–17597. doi: 10.1073/pnas.1011247107
|
[14] | Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, et al. (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19: 244–256. doi: 10.1016/j.str.2010.11.016
|
[15] | Zhang Y, Sivasankar S, Nelson WJ, Chu S (2009) Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci U S A 106: 109–114. doi: 10.1073/pnas.0811350106
|
[16] | Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22: 299–310. doi: 10.1016/j.tcb.2012.03.004
|
[17] | Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, et al. (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A 97: 4005–4010. doi: 10.1073/pnas.070052697
|
[18] | Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D (2012) Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J Cell Biol 198: 695–709. doi: 10.1083/jcb.201110076
|
[19] | Niessen CM, Gumbiner BM (2002) Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J Cell Biol 156: 389–399. doi: 10.1083/jcb.200108040
|
[20] | Gavard J, Lambert M, Grosheva I, Marthiens V, Irinopoulou T, et al. (2004) Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J Cell Sci 117: 257–270. doi: 10.1242/jcs.00857
|
[21] | Kindermann M, George N, Johnsson N, Johnsson K (2003) Covalent and selective immobilization of fusion proteins. J Am Chem Soc 125: 7810–7811. doi: 10.1021/ja034145s
|
[22] | Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, et al. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21: 86–89. doi: 10.1038/nbt765
|
[23] | Engin S, Trouillet V, Franz CM, Welle A, Bruns M, et al. (2010) Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures. Langmuir 26: 6097–6101. doi: 10.1021/la904829y
|
[24] | Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips Rev Sci Instrum. 64: 1868–1873. doi: 10.1063/1.1143970
|
[25] | Franz CM, Taubenberger A, Puech PH, Muller DJ (2007) Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE: pl5.
|
[26] | Ozawa M, Kemler R (1990) Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J Cell Biol 111: 1645–1650. doi: 10.1083/jcb.111.4.1645
|
[27] | Bruns M, Barth C, Brüner P, Engin S, Grehl T, et al. (2012) Structure and chemical composition of mixed benzylguanine- and methoxy-terminated self-assembled monolayers for immobilization of biomolecules. Surface and Interface Analysis 44: 909–913. doi: 10.1002/sia.4876
|
[28] | Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140: 1227–1240. doi: 10.1083/jcb.140.5.1227
|
[29] | Leckband D, Sivasankar S (2012) Cadherin recognition and adhesion. Curr Opin Cell Biol 24: 620–627. doi: 10.1016/j.ceb.2012.05.014
|
[30] | Thiery JP, Engl W, Viasnoff V, Dufour S (2012) Biochemical and biophysical origins of cadherin selectivity and adhesion strength. Curr Opin Cell Biol 24: 614–619. doi: 10.1016/j.ceb.2012.06.007
|
[31] | Chappuis-Flament S, Wong E, Hicks LD, Kay CM, Gumbiner BM (2001) Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol 154: 231–243. doi: 10.1083/jcb.200103143
|
[32] | Chien YH, Jiang N, Li F, Zhang F, Zhu C, et al. (2008) Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J Biol Chem 283: 1848–1856. doi: 10.1074/jbc.m708044200
|
[33] | Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014: 155–163. doi: 10.1196/annals.1294.016
|
[34] | Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE (1998) Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption. J Phys Chem B 102: 426–436. doi: 10.1021/jp972635z
|
[35] | Korner A, Deichmann C, Rossetti FF, Kohler A, Konovalov OV, et al. (2013) Cell differentiation of pluripotent tissue sheets immobilized on supported membranes displaying cadherin-11. PLoS One 8: e54749. doi: 10.1371/journal.pone.0054749
|
[36] | Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, et al. (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98: 721–730. doi: 10.1042/bc20060039
|
[37] | Lambert M, Choquet D, Mege RM (2002) Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton. J Cell Biol 157: 469–479. doi: 10.1083/jcb.200107104
|
[38] | Adams CL, Chen YT, Smith SJ, Nelson WJ (1998) Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 142: 1105–1119. doi: 10.1083/jcb.142.4.1105
|
[39] | Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475: 510–513. doi: 10.1038/nature10183
|
[40] | McNeill H, Ryan TA, Smith SJ, Nelson WJ (1993) Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J Cell Biol 120: 1217–1226. doi: 10.1083/jcb.120.5.1217
|
[41] | Bayas MV, Leung A, Evans E, Leckband D (2006) Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys J 90: 1385–1395. doi: 10.1529/biophysj.105.069583
|
[42] | Taubenberger A, Cisneros DA, Friedrichs J, Puech PH, Muller DJ, et al. (2007) Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18: 1634–1644. doi: 10.1091/mbc.e06-09-0777
|
[43] | Franz CM, Taubenberger A, Puech PH, Muller DJ (2007) Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE 2007: pl5. doi: 10.1126/stke.4062007pl5
|
[44] | Selhuber-Unkel C, Lopez-Garcia M, Kessler H, Spatz JP (2008) Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys J 95: 5424–5431. doi: 10.1529/biophysj.108.139584
|
[45] | Helenius J, Heisenberg CP, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121: 1785–1791. doi: 10.1242/jcs.030999
|
[46] | Evans EA, Calderwood DA (2007) Forces and bond dynamics in cell adhesion. Science 316: 1148–1153. doi: 10.1126/science.1137592
|
[47] | Friedrichs J, Helenius J, Muller DJ (2010) Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat Protoc 5: 1353–1361. doi: 10.1038/nprot.2010.89
|
[48] | Sun M, Graham JS, Hegedus B, Marga F, Zhang Y, et al. (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89: 4320–4329. doi: 10.1529/biophysj.104.058180
|
[49] | Schmitz J, Benoit M, Gottschalk KE (2008) The viscoelasticity of membrane tethers and its importance for cell adhesion. Biophys J 95: 1448–1459. doi: 10.1529/biophysj.107.124289
|
[50] | Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77: 1992–2002. doi: 10.1016/s0006-3495(99)77040-2
|
[51] | Franz CM, Taubenberger A (2012) AFM-Based Single-Cell Force Spectroscopy. Atomic Force Microscopy in Liquid: Wiley-VCH Verlag GmbH & Co. KGaA. 307–330.
|
[52] | Puech PH, Poole K, Knebel D, Muller DJ (2006) A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106: 637–644. doi: 10.1016/j.ultramic.2005.08.003
|
[53] | Thie M, Rospel R, Dettmann W, Benoit M, Ludwig M, et al. (1998) Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Hum Reprod 13: 3211–3219. doi: 10.1093/humrep/13.11.3211
|
[54] | Muller MA, Opfer J, Brunie L, Volkhardt LA, Sinner EK, et al. (2013) The glycophorin A transmembrane sequence within integrin alphavbeta3 creates a non-signaling integrin with low basal affinity that is strongly adhesive under force. J Mol Biol 425: 2988–3006. doi: 10.1016/j.jmb.2013.05.020
|
[55] | Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, et al. (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119: 66–74. doi: 10.1242/jcs.02719
|
[56] | Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, et al. (2013) Three-Dimensional Microscaffolds Exhibiting Spatially Resolved Surface Chemistry. Adv Mater. doi: 10.1002/adma.201302678
|
[57] | Bayas MV, Leung A, Evans E, Leckband D (2006) Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys J 90: 1385–1395. doi: 10.1529/biophysj.105.069583
|
[58] | Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475: 510–513. doi: 10.1038/nature10183
|