全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Covalent and Density-Controlled Surface Immobilization of E-Cadherin for Adhesion Force Spectroscopy

DOI: 10.1371/journal.pone.0093123

Full-Text   Cite this paper   Add to My Lib

Abstract:

E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.

References

[1]  Stemmler MP (2008) Cadherins in development and cancer. Mol Biosyst 4: 835–850. doi: 10.1039/b719215k
[2]  del Valle I, Rudloff S, Carles A, Li Y, Liszewska E, et al. (2013) E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells. Development 140: 1684–1692. doi: 10.1242/dev.088690
[3]  Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, et al. (2009) E-Cadherin regulates neural stem cell self-renewal. J Neurosci 29: 3885–3896. doi: 10.1523/jneurosci.0037-09.2009
[4]  Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4: 118–132. doi: 10.1038/nrc1276
[5]  Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91: 8263–8267. doi: 10.1073/pnas.91.17.8263
[6]  Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A 92: 855–859. doi: 10.1073/pnas.92.3.855
[7]  Chou YF, Chen HH, Eijpe M, Yabuuchi A, Chenoweth JG, et al. (2008) The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 135: 449–461. doi: 10.1016/j.cell.2008.08.035
[8]  Becker SF, Langhe R, Huang C, Wedlich D, Kashef J (2012) Giving the right tug for migration: cadherins in tissue movements. Arch Biochem Biophys 524: 30–42. doi: 10.1016/j.abb.2012.02.013
[9]  Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22: 104–115. doi: 10.1016/j.devcel.2011.10.013
[10]  Pokutta S, Herrenknecht K, Kemmler R, Engel J (1994) Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem 223: 1019–1026. doi: 10.1111/j.1432-1033.1994.tb19080.x
[11]  Ozawa M, Engel J, Kemler R (1990) Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63: 1033–1038. doi: 10.1016/0092-8674(90)90506-a
[12]  Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91: 691–731. doi: 10.1152/physrev.00004.2010
[13]  Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, et al. (2010) Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proc Natl Acad Sci U S A 107: 17592–17597. doi: 10.1073/pnas.1011247107
[14]  Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, et al. (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19: 244–256. doi: 10.1016/j.str.2010.11.016
[15]  Zhang Y, Sivasankar S, Nelson WJ, Chu S (2009) Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci U S A 106: 109–114. doi: 10.1073/pnas.0811350106
[16]  Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22: 299–310. doi: 10.1016/j.tcb.2012.03.004
[17]  Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, et al. (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A 97: 4005–4010. doi: 10.1073/pnas.070052697
[18]  Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D (2012) Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J Cell Biol 198: 695–709. doi: 10.1083/jcb.201110076
[19]  Niessen CM, Gumbiner BM (2002) Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J Cell Biol 156: 389–399. doi: 10.1083/jcb.200108040
[20]  Gavard J, Lambert M, Grosheva I, Marthiens V, Irinopoulou T, et al. (2004) Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J Cell Sci 117: 257–270. doi: 10.1242/jcs.00857
[21]  Kindermann M, George N, Johnsson N, Johnsson K (2003) Covalent and selective immobilization of fusion proteins. J Am Chem Soc 125: 7810–7811. doi: 10.1021/ja034145s
[22]  Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, et al. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21: 86–89. doi: 10.1038/nbt765
[23]  Engin S, Trouillet V, Franz CM, Welle A, Bruns M, et al. (2010) Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures. Langmuir 26: 6097–6101. doi: 10.1021/la904829y
[24]  Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips Rev Sci Instrum. 64: 1868–1873. doi: 10.1063/1.1143970
[25]  Franz CM, Taubenberger A, Puech PH, Muller DJ (2007) Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE: pl5.
[26]  Ozawa M, Kemler R (1990) Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J Cell Biol 111: 1645–1650. doi: 10.1083/jcb.111.4.1645
[27]  Bruns M, Barth C, Brüner P, Engin S, Grehl T, et al. (2012) Structure and chemical composition of mixed benzylguanine- and methoxy-terminated self-assembled monolayers for immobilization of biomolecules. Surface and Interface Analysis 44: 909–913. doi: 10.1002/sia.4876
[28]  Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140: 1227–1240. doi: 10.1083/jcb.140.5.1227
[29]  Leckband D, Sivasankar S (2012) Cadherin recognition and adhesion. Curr Opin Cell Biol 24: 620–627. doi: 10.1016/j.ceb.2012.05.014
[30]  Thiery JP, Engl W, Viasnoff V, Dufour S (2012) Biochemical and biophysical origins of cadherin selectivity and adhesion strength. Curr Opin Cell Biol 24: 614–619. doi: 10.1016/j.ceb.2012.06.007
[31]  Chappuis-Flament S, Wong E, Hicks LD, Kay CM, Gumbiner BM (2001) Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol 154: 231–243. doi: 10.1083/jcb.200103143
[32]  Chien YH, Jiang N, Li F, Zhang F, Zhu C, et al. (2008) Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J Biol Chem 283: 1848–1856. doi: 10.1074/jbc.m708044200
[33]  Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014: 155–163. doi: 10.1196/annals.1294.016
[34]  Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE (1998) Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption. J Phys Chem B 102: 426–436. doi: 10.1021/jp972635z
[35]  Korner A, Deichmann C, Rossetti FF, Kohler A, Konovalov OV, et al. (2013) Cell differentiation of pluripotent tissue sheets immobilized on supported membranes displaying cadherin-11. PLoS One 8: e54749. doi: 10.1371/journal.pone.0054749
[36]  Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, et al. (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98: 721–730. doi: 10.1042/bc20060039
[37]  Lambert M, Choquet D, Mege RM (2002) Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton. J Cell Biol 157: 469–479. doi: 10.1083/jcb.200107104
[38]  Adams CL, Chen YT, Smith SJ, Nelson WJ (1998) Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 142: 1105–1119. doi: 10.1083/jcb.142.4.1105
[39]  Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475: 510–513. doi: 10.1038/nature10183
[40]  McNeill H, Ryan TA, Smith SJ, Nelson WJ (1993) Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J Cell Biol 120: 1217–1226. doi: 10.1083/jcb.120.5.1217
[41]  Bayas MV, Leung A, Evans E, Leckband D (2006) Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys J 90: 1385–1395. doi: 10.1529/biophysj.105.069583
[42]  Taubenberger A, Cisneros DA, Friedrichs J, Puech PH, Muller DJ, et al. (2007) Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18: 1634–1644. doi: 10.1091/mbc.e06-09-0777
[43]  Franz CM, Taubenberger A, Puech PH, Muller DJ (2007) Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE 2007: pl5. doi: 10.1126/stke.4062007pl5
[44]  Selhuber-Unkel C, Lopez-Garcia M, Kessler H, Spatz JP (2008) Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys J 95: 5424–5431. doi: 10.1529/biophysj.108.139584
[45]  Helenius J, Heisenberg CP, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121: 1785–1791. doi: 10.1242/jcs.030999
[46]  Evans EA, Calderwood DA (2007) Forces and bond dynamics in cell adhesion. Science 316: 1148–1153. doi: 10.1126/science.1137592
[47]  Friedrichs J, Helenius J, Muller DJ (2010) Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat Protoc 5: 1353–1361. doi: 10.1038/nprot.2010.89
[48]  Sun M, Graham JS, Hegedus B, Marga F, Zhang Y, et al. (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89: 4320–4329. doi: 10.1529/biophysj.104.058180
[49]  Schmitz J, Benoit M, Gottschalk KE (2008) The viscoelasticity of membrane tethers and its importance for cell adhesion. Biophys J 95: 1448–1459. doi: 10.1529/biophysj.107.124289
[50]  Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77: 1992–2002. doi: 10.1016/s0006-3495(99)77040-2
[51]  Franz CM, Taubenberger A (2012) AFM-Based Single-Cell Force Spectroscopy. Atomic Force Microscopy in Liquid: Wiley-VCH Verlag GmbH & Co. KGaA. 307–330.
[52]  Puech PH, Poole K, Knebel D, Muller DJ (2006) A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106: 637–644. doi: 10.1016/j.ultramic.2005.08.003
[53]  Thie M, Rospel R, Dettmann W, Benoit M, Ludwig M, et al. (1998) Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Hum Reprod 13: 3211–3219. doi: 10.1093/humrep/13.11.3211
[54]  Muller MA, Opfer J, Brunie L, Volkhardt LA, Sinner EK, et al. (2013) The glycophorin A transmembrane sequence within integrin alphavbeta3 creates a non-signaling integrin with low basal affinity that is strongly adhesive under force. J Mol Biol 425: 2988–3006. doi: 10.1016/j.jmb.2013.05.020
[55]  Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, et al. (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119: 66–74. doi: 10.1242/jcs.02719
[56]  Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, et al. (2013) Three-Dimensional Microscaffolds Exhibiting Spatially Resolved Surface Chemistry. Adv Mater. doi: 10.1002/adma.201302678
[57]  Bayas MV, Leung A, Evans E, Leckband D (2006) Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys J 90: 1385–1395. doi: 10.1529/biophysj.105.069583
[58]  Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475: 510–513. doi: 10.1038/nature10183

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133