全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Reference Gene Selection for Gene Expression Analysis of Oocytes Collected from Dairy Cattle and Buffaloes during Winter and Summer

DOI: 10.1371/journal.pone.0093287

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR) relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design. Hence, it is recommended to evaluate expression stability of candidate reference genes for a specific experimental condition before employing them as internal controls. In acknowledgment of the importance of seasonal effects on oocyte gene expression, the aim of this study was to evaluate the stability of expression levels of ten well-known reference genes (ACTB, GAPDH, GUSB, HIST1H2AG, HPRT1, PPIA, RPL15, SDHA, TBP and YWHAZ) using oocytes collected from different categories of dairy cattle and buffaloes during winter and summer. A normalization factor was provided for cattle (RPL15, PPIA and GUSB) and buffaloes (YWHAZ, GUSB and GAPDH) based on the expression of the three most stable reference genes in each species. Normalization of non-reference target genes by these reference genes was shown to be considerably different from normalization by less stable reference genes, further highlighting the need for careful selection of internal controls. Therefore, due to the high variability of reference genes among experimental groups, we conclude that data normalized by internal controls can be misleading and should be compared to not normalized data or to data normalized by an external control in order to better interpret the biological relevance of gene expression analysis.

References

[1]  Wolfenson D, Roth Z, Meidan R (2000) Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim Reprod Sci 60–61: 535–547. doi: 10.1016/s0378-4320(00)00102-0
[2]  Megahed GA, Anwar MM, Wasfy SI, Hammadeh ME (2008) Influence of heat stress on the cortisol and oxidant-antioxidants balance during oestrous phase in buffalo-cows (Bubalus bubalis): thermo-protective role of antioxidant treatment. Reprod Domest Anim 43: 672–677. doi: 10.1111/j.1439-0531.2007.00968.x
[3]  André G, Engel B, Berentsen PB, Vellinga TV, Lansink AG (2011) Quantifying the effect of heat stress on daily milk yield and monitoring dynamic changes using an adaptive dynamic model. J Dairy Sci 94: 4502–4513.
[4]  Roth Z (2008) Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows. Reprod Domest Anim 43 Suppl 2: 238–244. doi: 10.1111/j.1439-0531.2008.01168.x
[5]  Kadokawa H, Sakatani M, Hansen PJ (2012) Perspectives on improvement of reproduction in cattle during heat stress in a future Japan. Anim Sci J 83: 439–445. doi: 10.1111/j.1740-0929.2012.01011.x
[6]  Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond B Biol Sci 364: 3341–3350. doi: 10.1098/rstb.2009.0131
[7]  Zicarelli L (2010) Enhancing reproductive performance in domestic dairy water buffalo (Bubalus bubalis). Soc Reprod Fertil Suppl 67: 443–455. doi: 10.5661/rdr-vii-443
[8]  St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic Losses from Heat Stress by US Livestock Industries. J Dairy Sci 86: E52–E77.
[9]  Cavestany D, el-Wishy AB, Foote RH (1985) Effect of season and high environmental temperature on fertility of Holstein cattle. J Dairy Sci 68: 1471–1478.
[10]  Di Francesco S, Boccia L, Campanile G, Di Palo R, Vecchio D, et al. (2011) The effect of season on oocyte quality and developmental competence in Italian Mediterranean buffaloes (Bubalus bubalis). Anim Reprod Sci 123: 48–53. doi: 10.1016/j.anireprosci.2010.11.009
[11]  Di Francesco S, Novoa MVS, Vecchio D, Neglia G, Boccia L, et al. (2012) Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology 77: 148–154. doi: 10.1016/j.theriogenology.2011.07.028
[12]  Das GK, Khan FA (2010) Summer anoestrus in buffalo–a review. Reprod Domest Anim 45: e483–94. doi: 10.1111/j.1439-0531.2010.01598.x
[13]  Al-Katanani YM, Paula-Lopes FF, Hansen PJ (2002) Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J Dairy Sci 85: 390–396.
[14]  Sakatani M, Alvarez NV, Takahashi M, Hansen PJ (2012) Consequences of physiological heat shock beginning at the zygote stage on embryonic development and expression of stress response genes in cattle. J Dairy Sci 95: 3080–3091.
[15]  Gendelman M, Roth Z (2012) In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression. Anim Reprod Sci 134: 125–134. doi: 10.1016/j.anireprosci.2012.07.009
[16]  Gendelman M, Roth Z (2012) Seasonal effect on germinal vesicle-stage bovine oocytes is further expressed by alterations in transcript levels in the developing embryos associated with reduced developmental competence. Biol Reprod 86: 1–9. doi: 10.1095/biolreprod.111.092882
[17]  Ealy AD, Drost M, Hansen PJ (1993) Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J Dairy Sci 76: 2899–2905.
[18]  Hansen P, Aréchiga C (1999) Strategies for managing reproduction in the heat-stressed dairy cow. J Anim Sci 77 Suppl 2: 36–50.
[19]  Hansen PJ, Drost M, Rivera RM, Paula-Lopes FF, al-Katanani YM, et al. (2001) Adverse impact of heat stress on embryo production: causes and strategies for mitigation. Theriogenology 55: 91–103. doi: 10.1016/s0093-691x(00)00448-9
[20]  Nandi S, Chauhan MS, Palta P (2001) Effect of environmental temperature on quality and developmental competence in vitro of buffalo oocytes. Vet Rec 148: 278–279. doi: 10.1136/vr.148.9.278
[21]  Yadav A, Singh K, Singh M, Saini N, Palta P, et al. (2013) Effect of Physiologically Relevant Heat Shock on Development, Apoptosis and Expression of Some Genes in Buffalo (Bubalus bubalis) Embryos Produced In Vitro. Reprod Domest Anim doi: 10.1111/rda.12175
[22]  Di Francesco S, Neglia G, Vecchio D, Rossi P, Russo M, et al. (2012) Influence of season on corpus luteum structure and function and AI outcome in the Italian Mediterranean buffalo (Bubalus bubalis). Theriogenology 78: 1839–1845. doi: 10.1016/j.theriogenology.2012.07.022
[23]  Manjunatha BM, Ravindra JP, Gupta PSP, Devaraj M, Nandi S (2009) Effect of breeding season on in vivo oocyte recovery and embryo production in non-descriptive Indian river buffaloes (Bubalus bubalis). Anim Reprod Sci 111: 376–383. doi: 10.1016/j.anireprosci.2008.03.003
[24]  Camargo LSA, Viana JHM, Ramos AA, Serapi?o RV, de Sa WF, et al. (2007) Developmental competence and expression of the Hsp 70.1 gene in oocytes obtained from Bos indicus and Bos taurus dairy cows in a tropical environment. Theriogenology 68: 626–632. doi: 10.1016/j.theriogenology.2007.03.029
[25]  Sharma GT, Nath A, Prasad S, Singhal S, Singh N, et al. (2012) Expression and characterization of constitutive heat shock protein 70.1 (HSPA-1A) gene in in vitro produced and in vivo-derived buffalo (Bubalus bubalis) embryos. Reprod Domest Anim 47: 975–983. doi: 10.1111/j.1439-0531.2012.02002.x
[26]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[27]  Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26: 509–515. doi: 10.1023/b:bile.0000019559.84305.47
[28]  Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, et al. (2005) Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol 5: 27. doi: 10.1186/1471-213x-5-27
[29]  Mamo S, Gal AB, Bodo S, Dinnyes A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 7: 14. doi: 10.1186/1471-213x-7-14
[30]  Mamo S, Carter F, Lonergan P, Leal CL, Al Naib A, et al. (2011) Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation. BMC Genomics 12: 151. doi: 10.1186/1471-2164-12-151
[31]  Bettegowda A, Patel OV, Ireland JJ, Smith GW (2006) Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin, and histone H2A during bovine oocyte maturation and early embryogen. Mol Reprod Dev 73: 267–278. doi: 10.1002/mrd.20333
[32]  Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
[33]  Ferreira RM, Ayres H, Chiaratti MR, Ferraz ML, Araújo AB, et al. (2011) The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J Dairy Sci 94: 2383–2392.
[34]  Bettegowda A, Patel OV, Ireland JJ, Smith GW (2006) Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin, and histone H2A during bovine oocyte maturation and early embryogen. Mol Reprod Dev 73: 267–278. doi: 10.1002/mrd.20333
[35]  Donnison M, Pfeffer PL (2004) Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development. Biol Reprod 71: 1813–1821. doi: 10.1095/biolreprod.104.032367
[36]  Robert C, McGraw S, Massicotte LL, Pravetoni M, Gandolfi F, et al. (2002) Quantification of Housekeeping Transcript Levels During the Development of Bovine Preimplantation Embryos. Biol Reprod 67: 1465–1472. doi: 10.1095/biolreprod.102.006320
[37]  Thelie A, Papillier P, Perreau C, Uzbekova S, Hennequet-Antier C, et al. (2009) Regulation of bovine oocyte-specific transcripts during in vitro oocyte maturation and after maternal-embryonic transition analyzed using a transcriptomic approach. Mol Reprod Dev 76: 773–782. doi: 10.1002/mrd.21031
[38]  Vigneault C, Gilbert I, Sirard MA, Robert C (2007) Using the histone H2a transcript as an endogenous standard to study relative transcript abundance during bovine early development. Mol Reprod Dev 715: 703–715. doi: 10.1002/mrd.20665
[39]  Gimenes LU, Carvalho NAT, Sá Filho MF, Vannucci FS, Torres-Júnior JRS, et al. (2011) Ultrasonographic and endocrine aspects of follicle deviation, and acquisition of ovulatory capacity in buffalo (Bubalus bubalis) heifers. Anim Reprod Sci 123: 175–179. doi: 10.1016/j.anireprosci.2010.12.004
[40]  Gimenes LU, Ferraz ML, Araujo A, Fantinato Neto P, Chiarati MR, et al. (2010) 273 Ovum pickup at different timers of a synchronized follicular wave wiw not affect IVP in Bos indicus, Bos taurus, or Bubalus bubalis. Reprod Fertil Dev 22: 293. doi: 10.1071/rdv22n1ab273
[41]  Chiaratti MR, Bressan FF, Ferreira CR, Caetano AR, Smith LC, et al. (2010) Embryo mitochondrial DNA depletion is reversed during early embryogenesis in cattle. Biol Reprod 82: 76–85. doi: 10.1095/biolreprod.109.077776
[42]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29: e45. doi: 10.1093/nar/29.9.e45
[43]  Sakatani M, Alvarez NV, Takahashi M, Hansen PJ (2012) Consequences of physiological heat shock beginning at the zygote stage on embryonic development and expression of stress response genes in cattle. J Dairy Sci 95: 3080–3091.
[44]  Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39: 75–85. doi: 10.2144/05391rv01
[45]  Thundathil J, Filion F, Smith LC (2005) Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev 71: 405–413. doi: 10.1002/mrd.20260
[46]  De Bem THC, Chiaratti MR, Rochetti R, Bressan FF, Sangalli JR, et al. (2011) Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes. Cell Reprogram 13: 419–429. doi: 10.1089/cell.2011.0010
[47]  Biase FH, Everts RE, Oliveira R, Santos-Biase WKF, Fonseca Merighe GK, et al. (2012) Messenger RNAs in metaphase II oocytes correlate with successful embryo development to the blastocyst stage. Zygote 1–11. doi: 10.1017/s0967199412000299
[48]  Klatsky PC, Wessel GM, Carson SA (2010) Detection and quantification of mRNA in single human polar bodies: a minimally invasive test of gene expression during oogenesis. Mol Hum Reprod 16: 938–943. doi: 10.1093/molehr/gaq077
[49]  Duncan FE, Schultz RM (2010) Gene expression profiling of mouse oocytes and preimplantation embryos. Methods Enzymol 477: 457–480. doi: 10.1016/s0076-6879(10)77023-3
[50]  Schmitz KJ, Helwig J, Bertram S, Sheu SY, Suttorp aC, et al. (2011) Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J Clin Pathol 64: 529–535. doi: 10.1136/jcp.2010.085621
[51]  London A, Itskovich E, Benhar I, Kalchenko V, Mack M, et al. (2011) Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 208: 23–39. doi: 10.1084/jem.20101202
[52]  Desitter I, Guerrouahen BS, Benali-Furet N, Wechsler J, J?nne PA, et al. (2011) A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res 31: 427–441.
[53]  Ivan Bower N, Joachim Moser R, Robert Hill J, Arabella Lehnert S (2007) Universal reference method for real-time PCR gene expression analysis of preimplantation embryos. Biotechniques 42: 199–206. doi: 10.2144/000112314
[54]  Kumar P, Yadav P, Verma A, Singh D, De S, et al. (2012) Identification of stable reference genes for gene expression studies using quantitative real time PCR in buffalo oocytes and embryos. Reprod Domest Anim 47: e88–91. doi: 10.1111/j.1439-0531.2012.01998.x
[55]  Sakatani M, Bonilla L, Dobbs KB, Block J, Ozawa M, et al. (2013) Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance. Reprod Biol Endocrinol 11: 3. doi: 10.1186/1477-7827-11-3
[56]  Haque N, Ludri A, Hossain SA, Ashutosh M (2012) Comparative studies on temperature threshold for heat shock protein 70 induction in young and adult Murrah buffaloes. J Anim Physiol Anim Nutr (Berl) 96: 920–929. doi: 10.1111/j.1439-0396.2011.01208.x
[57]  Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, et al. (2005) Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol 5: 27. doi: 10.1186/1471-213x-5-27
[58]  Hayashi S, Yang J, Christenson L, Yanagimachi R, Hecht NB (2003) Mouse preimplantation embryos developed from oocytes injected with round spermatids or spermatozoa have similar but distinct patterns of early messenger RNA expression. Biol Reprod 69: 1170–1176. doi: 10.1095/biolreprod.103.016832

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133