全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion

DOI: 10.1371/journal.pone.0093296

Full-Text   Cite this paper   Add to My Lib

Abstract:

Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions.

References

[1]  Lotze HK, Milewski I (2004) Two centuries of multiple human impacts and successive changes in a North Atlantic food web. Ecol Appl 14: 1428–1447. doi: 10.1890/03-5027
[2]  Agardy T, Alder J, Dayton P, Curran S, Kitchingman A, et al.. (2005) Ecosystems and human well-being: current state and trends (MEA).
[3]  Halpern BS, Walbridge S, Selkoe K a, Kappel C V, Micheli F, et al. (2008) A global map of human impact on marine ecosystems. Science 319: 948–952. doi: 10.1126/science.1149345
[4]  Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, et al. (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7: e43542. doi: 10.1371/journal.pone.0043542
[5]  Deegan L a, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, et al. (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392. doi: 10.1038/nature11533
[6]  Altieri AH, Bertness MD, Coverdale TC, Herrmann NC, Angelini C (2012) A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93: 1402–1410. doi: 10.1890/11-1314.1
[7]  Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, et al. (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809. doi: 10.1126/science.1128035
[8]  Orth RJ, Carruthers TIMJB, Dennison WC, Duarte CM, James W, et al. (2006) A global crisis for seagrass ecosystems. Bioscience 56: 987–996. doi: 10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2
[9]  Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370. doi: 10.1126/science.1135456
[10]  Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76: 1–13. doi: 10.1016/j.ecss.2007.08.024
[11]  Hansen J, Sato M, Ruedy R (2006) Global temperature change. Proc Natl Acad Sci U S A 103: 14288–14293. doi: 10.1073/pnas.0606291103
[12]  Korner C (2003) Atmospheric science. Slow in, rapid out—carbon flux studies and Kyoto targets. Science 300: 1242–1243. doi: 10.1126/science.1084460
[13]  Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Climate Change 2007: Mitigation of Climate Change (IPCC).
[14]  Mumby PJ, Dahlgren CP, Harborne AR, Kappel C V, Micheli F, et al. (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311: 98–101. doi: 10.1126/science.1121129
[15]  Dean W, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26: 535–538. doi: 10.1130/0091-7613(1998)026<0535:masocb>2.3.co;2
[16]  Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627. doi: 10.1126/science.1097396
[17]  Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, et al. (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81: 169–193. doi: 10.1890/10-1510.1
[18]  Mcleod E, Chmura GL, Bouillon S, Salm R, Bj?rk M, et al. (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9: 552–560. doi: 10.1890/110004
[19]  Chmura GL (2013) What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean Coast Manag 83: 25–31. doi: 10.1016/j.ocecoaman.2011.09.006
[20]  Macreadie PI, Hughes a R, Kimbro DL (2013) Loss of “blue carbon” from coastal salt marshes following habitat disturbance. PLoS One 8: e69244. doi: 10.1371/journal.pone.0069244
[21]  Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, et al. (2012) Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109: 11234–11239. doi: 10.1073/pnas.1204922109
[22]  Bromberg Gedan K, Silliman BR (2009) Patterns of salt marsh soss within coastal regions of North America: presettlement to present. In: Silliman BR, Grosholtz T, Bertness MD, editors. Human Impacts on Salt Marshes: A Global Perspective. Los Angeles, CA: University of California Press. pp. 253–267.
[23]  Bertness MD, Silliman BR (2008) Consumer control of salt marshes driven by human disturbance. Conserv Biol 22: 618–623. doi: 10.1111/j.1523-1739.2008.00962.x
[24]  Coverdale TC, Herrmann NC, Altieri AH, Bertness MD (2013) Latent impacts: the role of historical human activity in coastal habitat loss. Front Ecol Environ 11: 69–74. doi: 10.1890/120130
[25]  Coverdale TC, Altieri AH, Bertness MD (2012) Belowground herbivory increases vulnerability of New England salt marshes to die-off. Ecology 93: 2085–2094. doi: 10.1890/12-0010.1
[26]  Osgood DT, Zieman JC (1993) Factors controlling aboveground Spartina alterniflora (smooth cordgrass) tissue element composition and production in different-age barrier island marshes. Estuaries 16: 815–826. doi: 10.2307/1352440
[27]  Coverdale TC, Bertness MD, Altieri AH (2013) Regional ontogeny of New England salt marsh die-off. Conserv Biol 27: 1041–1048. doi: 10.1111/cobi.12052
[28]  Lord CJ, Church TM (1983) The geochemistry of salt marshes: sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim Cosmochim Acta 47: 1381–1391. doi: 10.1016/0016-7037(83)90296-x
[29]  Liu J, Diamond J (2005) China ’s environment in a globalizing world. Nature 435: 1179–1186. doi: 10.1038/4351179a
[30]  Odum EP, Smalley AE (1959) Comparison of population energy flow of a herbivorous and a deposit-feeding invertebrate in a salt marsh ecosystem. Proc Natl Acad Sci U S A 45: 617–622. doi: 10.1073/pnas.45.4.617
[31]  Escapa M, Minkoff DR, Perillo GME, Iribarne O (2007) Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia-dominated marshes. Limnol Oceanogr 52: 2340–2349. doi: 10.4319/lo.2007.52.6.2340
[32]  Ranasinghe R, Duong TM, Uhlenbrook S, Roelvink D, Stive M (2012) Climate-change impact assessment for inlet-interrupted coastlines. Nat Clim Chang 3: 83–87. doi: 10.1038/nclimate1664
[33]  Craft C, Clough J, Ehman J, Joye S, Park R, et al. (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7: 73–78. doi: 10.1890/070219
[34]  Morris J, Sundareshwar P, Nietch C, Kjerfve B, Cahoon D (2002) Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877. doi: 10.2307/3072022
[35]  Wilmers C, Estes J, Edwards M, Laidre K, Konar B (2012) Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front Ecol Environ 10: 409–415. doi: 10.1890/110176
[36]  Silliman BR, van de Koppel J, Bertness MD, Stanton LE, Mendelssohn I (2005) Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310: 1803–1806. doi: 10.1126/science.1118229
[37]  Jefferies RL, Jano AP, Abraham KF (2006) A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. J Ecol 94: 234–242. doi: 10.1111/j.1365-2745.2005.01086.x
[38]  Siikam?ki J, Sanchirica JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci 109: 14369–14374. doi: 10.1073/pnas.1200519109
[39]  Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2: 207–247. doi: 10.1007/bf00137988
[40]  Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, et al. (1994) Carbon pools and flux of global forest ecosystems. Science 263: 185–190. doi: 10.1126/science.263.5144.185
[41]  Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2: 831–836. doi: 10.1038/ngeo689
[42]  Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545. doi: 10.1007/s100219900049
[43]  Altieri A, Bertness M, Coverdale T, Axelman E, Herrmann N, et al. (2013) Feedbacks underlie the resilience of salt marshes and rapid reversal of consumer-driven die-off. Ecology 94: 1647–1657. doi: 10.1890/12-1781.1
[44]  Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105: 17442–17446. doi: 10.1073/pnas.0804478105
[45]  Bell SS, Hall MO, Soffian S, Madley K (2002) Assessing the impact of boat propeller scars on fish and shrimp utilizing seagrass beds. Ecol Appl 12: 206–217. doi: 10.1890/1051-0761(2002)012[0206:atiobp]2.0.co;2
[46]  Ellison AM, Farnsworth EJ (1996) Anthropogenic disturbance of Caribbean mangrove ecosystems: past impacts, present trends, and future predictions. Biotropica 28: 549–565. doi: 10.2307/2389096
[47]  Erftemeijer PLA, Lewis III RRR (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52: 1553–1572. doi: 10.1016/j.marpolbul.2006.09.006
[48]  Hughes T (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265: 1547–1551. doi: 10.1126/science.265.5178.1547
[49]  Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29: 215–233. doi: 10.1016/s0921-8009(99)00009-9
[50]  Watling L, Norse E a (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12: 1180–1197. doi: 10.1046/j.1523-1739.1998.0120061180.x
[51]  Stuiver M, Reimer P, Braziunas T (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40: 1127–1151.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133