[1] | Lotze HK, Milewski I (2004) Two centuries of multiple human impacts and successive changes in a North Atlantic food web. Ecol Appl 14: 1428–1447. doi: 10.1890/03-5027
|
[2] | Agardy T, Alder J, Dayton P, Curran S, Kitchingman A, et al.. (2005) Ecosystems and human well-being: current state and trends (MEA).
|
[3] | Halpern BS, Walbridge S, Selkoe K a, Kappel C V, Micheli F, et al. (2008) A global map of human impact on marine ecosystems. Science 319: 948–952. doi: 10.1126/science.1149345
|
[4] | Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, et al. (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7: e43542. doi: 10.1371/journal.pone.0043542
|
[5] | Deegan L a, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, et al. (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392. doi: 10.1038/nature11533
|
[6] | Altieri AH, Bertness MD, Coverdale TC, Herrmann NC, Angelini C (2012) A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93: 1402–1410. doi: 10.1890/11-1314.1
|
[7] | Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, et al. (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809. doi: 10.1126/science.1128035
|
[8] | Orth RJ, Carruthers TIMJB, Dennison WC, Duarte CM, James W, et al. (2006) A global crisis for seagrass ecosystems. Bioscience 56: 987–996. doi: 10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2
|
[9] | Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370. doi: 10.1126/science.1135456
|
[10] | Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76: 1–13. doi: 10.1016/j.ecss.2007.08.024
|
[11] | Hansen J, Sato M, Ruedy R (2006) Global temperature change. Proc Natl Acad Sci U S A 103: 14288–14293. doi: 10.1073/pnas.0606291103
|
[12] | Korner C (2003) Atmospheric science. Slow in, rapid out—carbon flux studies and Kyoto targets. Science 300: 1242–1243. doi: 10.1126/science.1084460
|
[13] | Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Climate Change 2007: Mitigation of Climate Change (IPCC).
|
[14] | Mumby PJ, Dahlgren CP, Harborne AR, Kappel C V, Micheli F, et al. (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311: 98–101. doi: 10.1126/science.1121129
|
[15] | Dean W, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26: 535–538. doi: 10.1130/0091-7613(1998)026<0535:masocb>2.3.co;2
|
[16] | Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627. doi: 10.1126/science.1097396
|
[17] | Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, et al. (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81: 169–193. doi: 10.1890/10-1510.1
|
[18] | Mcleod E, Chmura GL, Bouillon S, Salm R, Bj?rk M, et al. (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9: 552–560. doi: 10.1890/110004
|
[19] | Chmura GL (2013) What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean Coast Manag 83: 25–31. doi: 10.1016/j.ocecoaman.2011.09.006
|
[20] | Macreadie PI, Hughes a R, Kimbro DL (2013) Loss of “blue carbon” from coastal salt marshes following habitat disturbance. PLoS One 8: e69244. doi: 10.1371/journal.pone.0069244
|
[21] | Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, et al. (2012) Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109: 11234–11239. doi: 10.1073/pnas.1204922109
|
[22] | Bromberg Gedan K, Silliman BR (2009) Patterns of salt marsh soss within coastal regions of North America: presettlement to present. In: Silliman BR, Grosholtz T, Bertness MD, editors. Human Impacts on Salt Marshes: A Global Perspective. Los Angeles, CA: University of California Press. pp. 253–267.
|
[23] | Bertness MD, Silliman BR (2008) Consumer control of salt marshes driven by human disturbance. Conserv Biol 22: 618–623. doi: 10.1111/j.1523-1739.2008.00962.x
|
[24] | Coverdale TC, Herrmann NC, Altieri AH, Bertness MD (2013) Latent impacts: the role of historical human activity in coastal habitat loss. Front Ecol Environ 11: 69–74. doi: 10.1890/120130
|
[25] | Coverdale TC, Altieri AH, Bertness MD (2012) Belowground herbivory increases vulnerability of New England salt marshes to die-off. Ecology 93: 2085–2094. doi: 10.1890/12-0010.1
|
[26] | Osgood DT, Zieman JC (1993) Factors controlling aboveground Spartina alterniflora (smooth cordgrass) tissue element composition and production in different-age barrier island marshes. Estuaries 16: 815–826. doi: 10.2307/1352440
|
[27] | Coverdale TC, Bertness MD, Altieri AH (2013) Regional ontogeny of New England salt marsh die-off. Conserv Biol 27: 1041–1048. doi: 10.1111/cobi.12052
|
[28] | Lord CJ, Church TM (1983) The geochemistry of salt marshes: sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim Cosmochim Acta 47: 1381–1391. doi: 10.1016/0016-7037(83)90296-x
|
[29] | Liu J, Diamond J (2005) China ’s environment in a globalizing world. Nature 435: 1179–1186. doi: 10.1038/4351179a
|
[30] | Odum EP, Smalley AE (1959) Comparison of population energy flow of a herbivorous and a deposit-feeding invertebrate in a salt marsh ecosystem. Proc Natl Acad Sci U S A 45: 617–622. doi: 10.1073/pnas.45.4.617
|
[31] | Escapa M, Minkoff DR, Perillo GME, Iribarne O (2007) Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia-dominated marshes. Limnol Oceanogr 52: 2340–2349. doi: 10.4319/lo.2007.52.6.2340
|
[32] | Ranasinghe R, Duong TM, Uhlenbrook S, Roelvink D, Stive M (2012) Climate-change impact assessment for inlet-interrupted coastlines. Nat Clim Chang 3: 83–87. doi: 10.1038/nclimate1664
|
[33] | Craft C, Clough J, Ehman J, Joye S, Park R, et al. (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7: 73–78. doi: 10.1890/070219
|
[34] | Morris J, Sundareshwar P, Nietch C, Kjerfve B, Cahoon D (2002) Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877. doi: 10.2307/3072022
|
[35] | Wilmers C, Estes J, Edwards M, Laidre K, Konar B (2012) Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front Ecol Environ 10: 409–415. doi: 10.1890/110176
|
[36] | Silliman BR, van de Koppel J, Bertness MD, Stanton LE, Mendelssohn I (2005) Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310: 1803–1806. doi: 10.1126/science.1118229
|
[37] | Jefferies RL, Jano AP, Abraham KF (2006) A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. J Ecol 94: 234–242. doi: 10.1111/j.1365-2745.2005.01086.x
|
[38] | Siikam?ki J, Sanchirica JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci 109: 14369–14374. doi: 10.1073/pnas.1200519109
|
[39] | Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2: 207–247. doi: 10.1007/bf00137988
|
[40] | Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, et al. (1994) Carbon pools and flux of global forest ecosystems. Science 263: 185–190. doi: 10.1126/science.263.5144.185
|
[41] | Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2: 831–836. doi: 10.1038/ngeo689
|
[42] | Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545. doi: 10.1007/s100219900049
|
[43] | Altieri A, Bertness M, Coverdale T, Axelman E, Herrmann N, et al. (2013) Feedbacks underlie the resilience of salt marshes and rapid reversal of consumer-driven die-off. Ecology 94: 1647–1657. doi: 10.1890/12-1781.1
|
[44] | Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105: 17442–17446. doi: 10.1073/pnas.0804478105
|
[45] | Bell SS, Hall MO, Soffian S, Madley K (2002) Assessing the impact of boat propeller scars on fish and shrimp utilizing seagrass beds. Ecol Appl 12: 206–217. doi: 10.1890/1051-0761(2002)012[0206:atiobp]2.0.co;2
|
[46] | Ellison AM, Farnsworth EJ (1996) Anthropogenic disturbance of Caribbean mangrove ecosystems: past impacts, present trends, and future predictions. Biotropica 28: 549–565. doi: 10.2307/2389096
|
[47] | Erftemeijer PLA, Lewis III RRR (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52: 1553–1572. doi: 10.1016/j.marpolbul.2006.09.006
|
[48] | Hughes T (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265: 1547–1551. doi: 10.1126/science.265.5178.1547
|
[49] | Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29: 215–233. doi: 10.1016/s0921-8009(99)00009-9
|
[50] | Watling L, Norse E a (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12: 1180–1197. doi: 10.1046/j.1523-1739.1998.0120061180.x
|
[51] | Stuiver M, Reimer P, Braziunas T (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40: 1127–1151.
|