全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Role of Alpha-1 and Alpha-2 Adrenoceptors in Restraint Stress-Induced Liver Injury in Mice

DOI: 10.1371/journal.pone.0092125

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acute stress affects cellular integrity in many tissues including the liver, but its underlying mechanism is still unclear. The aim of the present study was to investigate the potential involvement of catecholamines and adrenoceptors in the regulation of acute restraint stress-induced liver injury. Restraint was achieved by placing mice in restraint tubes. Mice were treated with either an α-l antagonist, prazosin, an α-2 antagonist, yohimbine, a β-l antagonist, betaxolol, a β-2 antagonist, ICI 118551, or a central and peripheral catecholamine depleting agent, reserpine, and followed by restraint stress. Assessment of liver injury (serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) , hepatic total GSH, GSSG and GSH/GSSG ratio) , histopathology and of apoptosis, by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay and western blotting, was performed. Three hours of restraint stress resulted in liver injury, as indexed by elevated serum transaminase levels, decreased hepatic total GSH levels and GSH/GSSG ratio, increased hepatic GSSG levels as well as enhanced hepatocytes apoptosis. Either reserpine or prazosin or yohimbine was found to attenuate liver injury. Furthermore, prazosin and yohimbine protected against restraint-induced hepatocytes apoptosis through attenuating the activation of caspases-9 and -3 and reducing the Bax/Bcl-2 ratio. These results suggest that α-1 and α-2 adrenoceptors mediate restraint-induced liver oxidative injury through caspase-9 and Bcl-2 family of apoptotic regulatory proteins.

References

[1]  Mastorakos G, Pavlatou M, Diamanti-Kandarakis E, Chrousos GP (2005) Exercise and the stress system. Hormones (Athens) 4: 73–89.
[2]  Mastorakos G, Pavlatou M (2005) Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res 37: 577–584. doi: 10.1055/s-2005-870426
[3]  Adamekova E, Markova M, Kubatka P, Bojkova B, Ahlers I, et al. (2003) NMU-induced mammary carcinogenesis in female rats is influenced by repeated psychoemotional stress. Neoplasma 50: 428–432. doi: 10.2754/avb200776030371
[4]  Black PH, Garbutt LD (2002) Stress, inflammation and cardiovascular disease. J Psychosom Res 52: 1–23. doi: 10.1016/s0022-3999(01)00302-6
[5]  Stojanovich L, Marisavljevich D (2008) Stress as a trigger of autoimmune disease. Autoimmun Rev 7: 209–213. doi: 10.1016/j.autrev.2007.11.007
[6]  Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease. JAMA 298: 1685–1687. doi: 10.1001/jama.298.14.1685
[7]  Salim SA-R (2012) Immobilization stress-induced oxidative damage and its amelioration with green and black teas. African Journal of Pharmacy and Pharmacology 6.
[8]  Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: Recent developments. Neuroscience & Biobehavioral Reviews 33: 1089–1098. doi: 10.1016/j.neubiorev.2009.05.004
[9]  Panuganti SD (2006) Enhanced Xenobiotic-Induced Hepatotoxicity and Kupffer Cell Activation by Restraint-Induced Stress. Journal of Pharmacology and Experimental Therapeutics 318: 26–34. doi: 10.1124/jpet.106.100933
[10]  Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev 33: 1089–1098. doi: 10.1016/j.neubiorev.2009.05.004
[11]  Salas M, Tuchweber B, Kourounakis P (1980) Liver ultrastructure during acute stress. Pathol Res Pract 167: 217–233. doi: 10.1016/s0344-0338(80)80052-5
[12]  Wang P, Tait SM, Chaudry IH (2000) Sustained elevation of norepinephrine depresses hepatocellular function. Biochim Biophys Acta 1535: 36–44. doi: 10.1016/s0925-4439(00)00080-6
[13]  Sahin E, Gumuslu S (2007) Immobilization stress in rat tissues: alterations in protein oxidation, lipid peroxidation and antioxidant defense system. Comp Biochem Physiol C Toxicol Pharmacol 144: 342–347. doi: 10.1016/j.cbpc.2006.10.009
[14]  Zaidi SM, Al-Qirim TM, Banu N (2005) Effects of antioxidant vitamins on glutathione depletion and lipid peroxidation induced by restraint stress in the rat liver. Drugs R D 6: 157–165.
[15]  Zaidi SM, Al-Qirim TM, Hoda N, Banu N (2003) Modulation of restraint stress induced oxidative changes in rats by antioxidant vitamins. J Nutr Biochem 14: 633–636. doi: 10.1016/s0955-2863(03)00117-7
[16]  Yang le J, Liu X, Liu de X, Jiang H, Mao XQ, et al. (2012) Effects of different adrenergic blockades on the stress resistance of Wistar rats. Neurosci Lett 511: 95–100. doi: 10.1016/j.neulet.2012.01.046
[17]  Ahmet I, Krawczyk M, Heller P, Moon C, Lakatta EG, et al. (2004) Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 110: 1083–1090. doi: 10.1161/01.cir.0000139844.15045.f9
[18]  von Montfort C, Beier JI, Guo L, Kaiser JP, Arteel GE (2008) Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in mice. Am J Physiol Gastrointest Liver Physiol 294: G1227–1234. doi: 10.1152/ajpgi.00050.2008
[19]  Kvetnansky R, Pacak K, Fukuhara K, Viskupic E, Hiremagalur B, et al. (1995) Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann N Y Acad Sci 771: 131–158. doi: 10.1111/j.1749-6632.1995.tb44676.x
[20]  Zubidat AE, Nelson RJ, Haim A (2008) Urinary adrenalin and cortisol secretion patterns of social voles in response to adrenergic blockade under basal conditions. Physiol Behav 93: 243–249. doi: 10.1016/j.physbeh.2007.08.024
[21]  Martini D, Monte MD, Ristori C, Cupisti E, Mei S, et al. (2011) Antiangiogenic effects of beta2 -adrenergic receptor blockade in a mouse model of oxygen-induced retinopathy. J Neurochem 119: 1317–1329. doi: 10.1111/j.1471-4159.2011.07530.x
[22]  Olfe J, Domanska G, Schuett C, Kiank C (2010) Different stress-related phenotypes of BALB/c mice from in-house or vendor: alterations of the sympathetic and HPA axis responsiveness. BMC Physiol 10: 2. doi: 10.1186/1472-6793-10-2
[23]  Rogoz Z (2010) Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice. Pharmacol Rep 62: 1191–1196.
[24]  Stone EA, Rhee J, Quartermain D (1996) Blockade of effect of stress on risk assessment behavior in mice by a beta-1 adrenoceptor antagonist. Pharmacol Biochem Behav 55: 215–217. doi: 10.1016/s0091-3057(96)00070-6
[25]  Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1: 3159–3165. doi: 10.1038/nprot.2006.378
[26]  Nichols WG, Steel HM, Bonny T, Adkison K, Curtis L, et al. (2008) Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Chemother 52: 858–865. doi: 10.1128/aac.00821-07
[27]  Fernandez G, Mena MP, Arnau A, Sanchez O, Soley M, et al. (2000) Immobilization stress induces c-Fos accumulation in liver. Cell Stress Chaperones 5: 306–312. doi: 10.1379/1466-1268(2000)005<0306:isicfa>2.0.co;2
[28]  Sanchez O, Arnau A, Pareja M, Poch E, Ramirez I, et al. (2002) Acute stress-induced tissue injury in mice: differences between emotional and social stress. Cell Stress Chaperones 7: 36–46. doi: 10.1379/1466-1268(2002)007<0036:asitii>2.0.co;2
[29]  Panuganti SD, Khan FD, Svensson CK (2006) Enhanced xenobiotic-induced hepatotoxicity and Kupffer cell activation by restraint-induced stress. J Pharmacol Exp Ther 318: 26–34. doi: 10.1124/jpet.106.100933
[30]  Oishi K, Machida K (2002) Different effects of immobilization stress on the mRNA expression of antioxidant enzymes in rat peripheral organs. Scand J Clin Lab Invest 62: 115–121. doi: 10.1080/003655102753611735
[31]  Zhu R, Wang Y, Zhang L, Guo Q (2012) Oxidative stress and liver disease. Hepatol Res 42: 741–749. doi: 10.1111/j.1872-034x.2012.00996.x
[32]  Bemeur C, Desjardins P, Butterworth RF (2010) Antioxidant and anti-inflammatory effects of mild hypothermia in the attenuation of liver injury due to azoxymethane toxicity in the mouse. Metab Brain Dis 25: 23–29. doi: 10.1007/s11011-010-9186-x
[33]  Reyes TM, Coe CL (1997) Prenatal manipulations reduce the proinflammatory response to a cytokine challenge in juvenile monkeys. Brain Res 769: 29–35. doi: 10.1016/s0006-8993(97)00687-2
[34]  Black PH (2002) Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun 16: 622–653. doi: 10.1016/s0889-1591(02)00021-1
[35]  Chida Y, Sudo N, Motomura Y, Kubo C (2004) Electric foot-shock stress drives TNF-alpha production in the liver of IL-6-deficient mice. Neuroimmunomodulation 11: 419–424. doi: 10.1159/000080153
[36]  Nukina H, Sudo N, Komaki G, Yu X, Mine K, et al. (1998) The restraint stress-induced elevation in plasma interleukin-6 negatively regulates the plasma TNF-alpha level. Neuroimmunomodulation 5: 323–327. doi: 10.1159/000026352
[37]  Ohta Y, Chiba S, Tada M, Imai Y, Kitagawa A (2007) Development of oxidative stress and cell damage in the liver of rats with water-immersion restraint stress. Redox Rep 12: 139–147. doi: 10.1179/135100007x200218
[38]  Sanchez O, Viladrich M, Ramirez I, Soley M (2007) Liver injury after an aggressive encounter in male mice. Am J Physiol Regul Integr Comp Physiol 293: R1908–1916. doi: 10.1152/ajpregu.00113.2007
[39]  Weng D, Lu Y, Wei Y, Liu Y, Shen P (2007) The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232: 15–23. doi: 10.1016/j.tox.2006.12.010
[40]  Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776. doi: 10.1038/35037710
[41]  Kwak HB, Song W, Lawler JM (2006) Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 20: 791–793. doi: 10.1096/fj.05-5116fje
[42]  Ma S, Morilak DA (2005) Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. J Neuroendocrinol 17: 22–28. doi: 10.1111/j.1365-2826.2005.01279.x
[43]  Feldman S, Conforti N, Weidenfeld J (1995) Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci Biobehav Rev 19: 235–240. doi: 10.1016/0149-7634(94)00062-6
[44]  Forray MI, Gysling K (2004) Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res Brain Res Rev 47: 145–160. doi: 10.1016/j.brainresrev.2004.07.011
[45]  Castrejon-Sosa M, Villalobos-Molina R, Guinzberg R, Pina E (2002) Adrenaline (via alpha(1B)-adrenoceptors) and ethanol stimulate OH* radical production in isolated rat hepatocytes. Life Sci 71: 2469–2474. doi: 10.1016/s0024-3205(02)02041-6
[46]  Swaroop A, Patole MS, Puranam RS, Ramasarma T (1983) Noradrenaline treatment of rats stimulates H2O2 generation in liver mitochondria. Biochem J 214: 745–750.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133