Background Though administrative databases are increasingly being used for research related to myocardial infarction (MI), the validity of MI diagnoses in these databases has never been synthesized on a large scale. Objective To conduct the first systematic review of studies reporting on the validity of diagnostic codes for identifying MI in administrative data. Methods MEDLINE and EMBASE were searched (inception to November 2010) for studies: (a) Using administrative data to identify MI; or (b) Evaluating the validity of MI codes in administrative data; and (c) Reporting validation statistics (sensitivity, specificity, positive predictive value (PPV), negative predictive value, or Kappa scores) for MI, or data sufficient for their calculation. Additonal articles were located by handsearch (up to February 2011) of original papers. Data were extracted by two independent reviewers; article quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. Results Thirty studies published from 1984–2010 were included; most assessed codes from the International Classification of Diseases (ICD)-9th revision. Sensitivity and specificity of hospitalization data for identifying MI in most [≥50%] studies was ≥86%, and PPV in most studies was ≥93%. The PPV was higher in the more-recent studies, and lower when criteria that do not incorporate cardiac troponin levels (such as the MONICA) were employed as the gold standard. MI as a cause-of-death on death certificates also demonstrated lower accuracy, with maximum PPV of 60% (for definite MI). Conclusions Hospitalization data has higher validity and hence can be used to identify MI, but the accuracy of MI as a cause-of-death on death certificates is suboptimal, and more studies are needed on the validity of ICD-10 codes. When using administrative data for research purposes, authors should recognize these factors and avoid using vital statistics data if hospitalization data is not available to confirm deaths from MI.
References
[1]
Health statistics and informatics department, World Health Organization (2011) Causes of Death 2008 Summary Tables. Available: http://www.who.int/healthinfo/global_bur?den_disease/estimates_regional_2004_2008?/en/. Accessed 2014 March 10.
[2]
Leal J, Luengo-Fernandez R, Gray A, Petersen S, Rayner M (2006) Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J 27: 1610–1619. doi: 10.1093/eurheartj/ehi733
[3]
Mensah GA, Brown DW (2007) An overview of cardiovascular disease burden in the United States. Health Aff (Millwood) 26: 38–48. doi: 10.1377/hlthaff.26.1.38
[4]
Gonzalez A, Maradit Kremers H, Crowson CS, Ballman KV, Roger VL, et al. (2008) Do cardiovascular risk factors confer the same risk for cardiovascular outcomes in rheumatoid arthritis patients as in non-rheumatoid arthritis patients? Ann Rheum Dis 67: 64–69. doi: 10.1136/ard.2006.059980
[5]
Kuo CF, Yu KH, See LC, Chou IJ, Ko YS, et al. (2013) Risk of myocardial infarction among patients with gout: a nationwide population-based study. Rheumatology (Oxford) 52: 111–117. doi: 10.1093/rheumatology/kes169
[6]
De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK (2010) Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis 69: 1162–1164. doi: 10.1136/ard.2009.122770
[7]
Watson DJ, Rhodes T, Guess HA (2003) All-cause mortality and vascular events among patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK General Practice Research Database. J Rheumatol 30: 1196–1202.
[8]
Solomon DH, Avorn J, Katz JN, Weinblatt ME, Setoguchi S, et al. (2006) Immunosuppressive medications and hospitalization for cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum 54: 3790–3798. doi: 10.1002/art.22255
[9]
Fischer LM, Schlienger RG, Matter C, Jick H, Meier CR (2004) Effect of rheumatoid arthritis or systemic lupus erythematosus on the risk of first-time acute myocardial infarction. Am J Cardiol 93: 198–200. doi: 10.1016/j.amjcard.2003.09.037
[10]
Rahman MM, Kopec JA, Anis AH, Cibere J, Goldsmith CH (2013) Risk of cardiovascular disease in patients with osteoarthritis: a prospective longitudinal study. Arthritis Care Res 65: 1951–58. doi: 10.1002/acr.22092
[11]
Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, et al. (2006) High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care 29: 798–804. doi: 10.2337/diacare.29.04.06.dc05-1433
[12]
Scherrer JF, Chrusciel T, Zeringue A, Garfield LD, Hauptman PJ, et al. (2010) Anxiety disorders increase risk for incident myocardial infarction in depressed and nondepressed Veterans Administration patients. Am Heart J 159: 772–779. doi: 10.1016/j.ahj.2010.02.033
[13]
Bernatsky S, Lix L, O'Donnell S, Lacaille D, CANRAD Network (2013) Consensus statements for the use of administrative health data in rheumatic disease research and surveillance. J Rheumatol 40: 66–73. doi: 10.3899/jrheum.120835
[14]
Barnabe C, Joseph L, Belisle P, Labrecque J, Barr SG, et al. (2012) Prevalence of autoimmune inflammatory myopathy in Alberta's First Nations population. Arthritis Care Res 64: 1715–1719. doi: 10.1002/acr.21743
[15]
Barnabe C, Joseph L, Belisle P, Labrecque J, Edworthy S, et al. (2012) Prevalence of systemic lupus erythematosus and systemic sclerosis in the First Nations population of Alberta, Canada. Arthritis Care Res 64: 138–143. doi: 10.1002/acr.20656
[16]
Bernatsky S, Lix L, Hanly J, Hudson M, Badley E, et al. (2011) Surveillance of systemic autoimmune rheumatic diseases using administrative data. Rheumatol Int 31: 549–554. doi: 10.1007/s00296-010-1591-2
[17]
Bernatsky S, Joseph L, Pineau CA, Tamblyn R, Feldman DE, et al. (2007) A population-based assessment of systemic lupus erythematosus incidence and prevalence—results and implications of using administrative data for epidemiological studies. Rheumatology 46: 1814–1818. doi: 10.1093/rheumatology/kem233
[18]
Kopec JA, Rahman MM, Sayre EC, Cibere J, Flanagan WM, et al. (2008) Trends in physician-diagnosed osteoarthritis incidence in an administrative database in British Columbia, Canada, 1996–1997 through 2003–2004. Arthritis Rheum 59: 929–934. doi: 10.1002/art.23827
[19]
Barber C, Lacaille D, Fortin PR (2013) Systematic review of validation studies of the use of administrative data to identify serious infections. Arthritis Care Res 65: 1343–1357. doi: 10.1002/acr.21959
[20]
Boyle CA, Dobson AJ (1995) The accuracy of hospital records and death certificates for acute myocardial infarction. Aust N Z J Med 25: 316–323. doi: 10.1111/j.1445-5994.1995.tb01896.x
[21]
Palomaki P, Miettinen H, Mustaniemi H, Lehto S, Pyorala K, et al. (1994) Diagnosis of acute myocardial infarction by MONICA and FINMONICA diagnostic criteria in comparison with hospital discharge diagnosis. J Clin Epidemiol 47: 659–666. doi: 10.1016/0895-4356(94)90213-5
[22]
Pladevall M, Goff DC, Nichaman MZ, Chan F, Ramsey D, et al. (1996) An assessment of the validity of ICD Code 410 to identify hospital admissions for myocardial infarction: The Corpus Christi Heart Project. Int J Epidemiol 25: 948–952. doi: 10.1093/ije/25.5.948
[23]
Ingelsson E, Arnlov J, Sundstrom J, Lind L (2005) The validity of a diagnosis of heart failure in a hospital discharge register. Eur J Heart Fail 7: 787–791. doi: 10.1016/j.ejheart.2004.12.007
[24]
Widdifield J, Labrecque J, Lix L, Paterson JM, Bernatsky S, et al. (2013) Systematic review and critical appraisal of validation studies to identify rheumatic diseases in health administrative databases. Arthritis Care Res 65: 1490–503. doi: 10.1002/acr.21993
[25]
Heisler CA, Melton LJ,3rd, Weaver AL, Gebhart JB (2009) Determining perioperative complications associated with vaginal hysterectomy: code classification versus chart review. J Am Coll Surg 209: 119–122. doi: 10.1016/j.jamcollsurg.2009.03.017
[26]
Chen G, Faris P, Hemmelgarn B, Walker RL, Quan H (2009) Measuring agreement of administrative data with chart data using prevalence unadjusted and adjusted kappa. BMC Med Res Methodol 9: 5–2288-9-5. doi: 10.1186/1471-2288-9-5
[27]
Henderson T, Shepheard J, Sundararajan V (2006) Quality of diagnosis and procedure coding in ICD-10 administrative data. Med Care 44: 1011–1019. doi: 10.1097/01.mlr.0000228018.48783.34
[28]
Humphries KH, Rankin JM, Carere RG, Buller CE, Kiely FM, et al. (2000) Co-morbidity data in outcomes research: are clinical data derived from administrative databases a reliable alternative to chart review? J Clin Epidemiol 53: 343–349. doi: 10.1016/s0895-4356(99)00188-2
[29]
Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3: 25.
[30]
Hudson M, Avina-Zubieta A, Lacaille D, Bernatsky S, Lix L, et al. (2013) The validity of administrative data to identify hip fractures is high—a systematic review. J Clin Epidemiol 66: 278–85. doi: 10.1016/j.jclinepi.2012.10.004
[31]
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33: 159–174. doi: 10.2307/2529310
[32]
Luepker RV, Apple FS, Christenson RH, Crow RS, Fortmann SP, et al. (2003) Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 108: 2543–2549. doi: 10.1161/01.cir.0000100560.46946.ea
[33]
Office of Cardiovascular Diseases, World Health Organization (1999) MONICA Manual - Coronary event registration data component. Available: http://www.ktl.fi/publications/monica/ma?nual/part4/iv-1.htm#s1-1. Accessed 2014 March 10.
[34]
Mahonen M, Salomaa V, Torppa J, Miettinen H, Pyorala K, et al. (1999) The validity of the routine mortality statistics on coronary heart disease in Finland: comparison with the FINMONICA MI register data for the years 1983–1992. Finnish multinational MONItoring of trends and determinants in CArdiovascular disease. J Clin Epidemiol 52: 157–166.
[35]
Mahonen M, Salomaa V, Brommels M, Molarius A, Miettinen H, et al. (1997) The validity of hospital discharge register data on coronary heart disease in Finland. Eur J Epidemiol 13: 403–415.
[36]
Rosamond WD, Chambless LE, Sorlie PD, Bell EM, Weitzman S, et al. (2004) Trends in the sensitivity, positive predictive value, false-positive rate, and comparability ratio of hospital discharge diagnosis codes for acute myocardial infarction in four US communities, 1987–2000. Am J Epidemiol 160: 1137–1146. doi: 10.1093/aje/kwh341
[37]
Beaglehole R, Stewart AW, Walker P (1987) Validation of coronary heart disease hospital discharge data. Aust N Z J Med 17: 43–6. doi: 10.1111/j.1445-5994.1987.tb05048.x
[38]
Jackson R, Graham P, Beaglehole R, De Boer G (1988) Validation of coronary heart disease death certificate diagnoses. N Z Med J 101: 658–660.
[39]
De Henauw S, de Smet P, Aelvoet W, Kornitzer M, De Backer G (1998) Misclassification of coronary heart disease in mortality statistics. Evidence from the WHO-MONICA Ghent-Charleroi Study in Belgium. J Epidemiol Community Health 52: 513–519. doi: 10.1136/jech.52.8.513
[40]
Kennedy GT, Stern MP, Crawford MH (1984) Miscoding of hospital discharges as acute myocardial infarction: implications for surveillance programs aimed at elucidating trends in coronary artery disease. Am J Cardiol 53: 1000–1002. doi: 10.1016/0002-9149(84)90625-8
[41]
Lowel H, Lewis M, Hormann A, Keil U (1991) Case finding, data quality aspects and comparability of myocardial infarction registers: results of a south German register study. J Clin Epidemiol 44: 249–260. doi: 10.1016/0895-4356(91)90036-9
[42]
Ainla T, Marandi T, Teesalu R, Baburin A, Elmet M, et al. (2006) Diagnosis and treatment of acute myocardial infarction in tertiary and secondary care hospitals in Estonia. Scand J Public Health 34: 327–331. doi: 10.1080/14034940500242019
[43]
Pajunen P, Koukkunen H, Ketonen M, Jerkkola T, Immonen-Raiha P, et al. (2005) The validity of the Finnish Hospital Discharge Register and Causes of Death Register data on coronary heart disease. Eur J Cardiovasc Prev Rehabil 12: 132–137. doi: 10.1097/01.hjr.0000140718.09768.ab
[44]
McCarthy EP, Iezzoni LI, Davis RB, Palmer RH, Cahalane M, et al. (2000) Does clinical evidence support ICD-9-CM diagnosis coding of complications? Med Care 38: 868–876. doi: 10.1097/00005650-200008000-00010
[45]
Levy AR, Tamblyn RM, Fitchett D, McLeod PJ, Hanley JA (1999) Coding accuracy of hospital discharge data for elderly survivors of myocardial infarction. Can J Cardiol 15: 1277–1282.
[46]
Rapola JM, Virtamo J, Korhonen P, Haapakoski J, Hartman AM, et al. (1997) Validity of diagnoses of major coronary events in national registers of hospital diagnoses and deaths in Finland. Eur J Epidemiol 13: 133–138.
[47]
Kiyota Y, Schneeweiss S, Glynn RJ, Cannuscio CC, Avorn J, et al. (2004) Accuracy of Medicare claims-based diagnosis of acute myocardial infarction: estimating positive predictive value on the basis of review of hospital records. Am Heart J 148: 99–104. doi: 10.1016/j.ahj.2004.02.013
[48]
Austin PC, Daly PA, Tu JV (2002) A multicenter study of the coding accuracy of hospital discharge administrative data for patients admitted to cardiac care units in Ontario. Am Heart J 144: 290–296. doi: 10.1067/mhj.2002.123839
[49]
Barchielli A, Balzi D, Naldoni P, Roberts AT, Profili F, et al. (2012) Hospital discharge data for assessing myocardial infarction events and trends, and effects of diagnosis validation according to MONICA and AHA criteria. J Epidemiol Community Health 66: 462–467. Epub 2010 October 19.
[50]
The Nova Scotia-Saskatchewan Cardiovascular Disease Epidemiology Group (1992) Trends in incidence and mortality from acute myocardial infarction in Nova Scotia and Saskatchewan 1974 to 1985. The Nova Scotia-Saskatchewan Cardiovascular Disease Epidemiology Group. Can J Cardiol 8: 253–258.
[51]
Nova Scotia-Saskatchewan Cardiovascular Disease Epidemiology Group (1989) Estimation of the incidence of acute myocardial infarction using record linkage: a feasibility study in Nova Scotia and Saskatchewan. Nova Scotia-Saskatchewan Cardiovascular Disease Epidemiology Group. Can J Public Health 80: 412–417.
[52]
Tunstall-Pedoe H (1988) for the WHO MONICA Project (1988) The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. J Clin Epidemiol 41: 105–114. doi: 10.1016/0895-4356(88)90084-4
[53]
Varas-Lorenzo C, Castellsague J, Stang MR, Tomas L, Aguado J, et al. (2008) Positive predictive value of ICD-9 codes 410 and 411 in the identification of cases of acute coronary syndromes in the Saskatchewan Hospital automated database. Pharmacoepidemiol Drug Saf 17: 842–852. doi: 10.1002/pds.1619
[54]
Salomaa V (2006) Old and new diagnostic criteria for acute myocardial infarction [abstract]. EuroPRevent: Annual Congress of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR), Athens, Greece. May 11–13, 2006.
[55]
Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, et al. (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60: 1581–1598. doi: 10.1038/nrcardio.2012.122
[56]
Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36: 959–969. doi: 10.1016/s0735-1097(00)00804-4
[57]
Kavsak PA, MacRae AR, Lustig V, Bhargava R, Vandersluis R, et al. (2006) The impact of the ESC/ACC redefinition of myocardial infarction and new sensitive troponin assays on the frequency of acute myocardial infarction. Am Heart J 152: 118–125. doi: 10.1016/j.ahj.2005.09.022
[58]
Salomaa V, Koukkunen H, Ketonen M, Immonen-Raiha P, Karja-Koskenkari P, et al. (2005) A new definition for myocardial infarction: what difference does it make? Eur Heart J 26: 1719–1725. doi: 10.1093/eurheartj/ehi185
[59]
Kontos MC, Fritz LM, Anderson FP, Tatum JL, Ornato JP, et al. (2003) Impact of the troponin standard on the prevalence of acute myocardial infarction. Am Heart J 146: 446–452. doi: 10.1016/s0002-8703(03)00245-x
[60]
Roger VL, Weston SA, Gerber Y, Killian JM, Dunlay SM, et al. (2010) Trends in incidence, severity, and outcome of hospitalized myocardial infarction. Circulation 121: 863–869. doi: 10.1161/circulationaha.109.897249
[61]
Parikh NI, Gona P, Larson MG, Fox CS, Benjamin EJ, et al. (2009) Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute's Framingham Heart Study. Circulation 119: 1203–1210. doi: 10.1161/circulationaha.108.825364
[62]
Merry AH, Boer JM, Schouten LJ, Feskens EJ, Verschuren WM, et al. (2009) Validity of coronary heart diseases and heart failure based on hospital discharge and mortality data in the Netherlands using the cardiovascular registry Maastricht cohort study. Eur J Epidemiol 24: 237–247. doi: 10.1007/s10654-009-9335-x
[63]
Kramer MS (1988) Chapter 16: Diagnostic Tests. In: Kramer MS. Clinical Epidemiology and Biostatics: A Primer for Clinical Investigators and Decision Makers. Berlin: Springer. pp. 236–253.
[64]
Hammar N, Alfredsson L, Rosen M, Spetz CL, Kahan T, et al. (2001) A national record linkage to study acute myocardial infarction incidence and case fatality in Sweden. Int J Epidemiol 30 Suppl 1S30–4. doi: 10.1093/ije/30.suppl_1.s30
[65]
Heckbert SR, Kooperberg C, Safford MM, Psaty BM, Hsia J, et al. (2004) Comparison of self-report, hospital discharge codes, and adjudication of cardiovascular events in the Women's Health Initiative. Am J Epidemiol 160: 1152–1158. doi: 10.1093/aje/kwh314
[66]
Lindblad U, Rastam L, Ranstam J, Peterson M (1993) Validity of register data on acute myocardial infarction and acute stroke: the Skaraborg Hypertension Project. Scand J Soc Med 21: 3–9. doi: 10.1177/140349489302100102
[67]
Petersen LA, Wright S, Normand SL, Daley J (1999) Positive predictive value of the diagnosis of acute myocardial infarction in an administrative database. J Gen Intern Med 14: 555–558. doi: 10.1046/j.1525-1497.1999.10198.x
[68]
Rawson NS, Malcolm E (1995) Validity of the recording of ischaemic heart disease and chronic obstructive pulmonary disease in the Saskatchewan health care datafiles. I. Stat Med 14: 2627–2643. doi: 10.1002/sim.4780142404
[69]
van Walraven C, Wang B, Ugnat AM, Naylor CD (1990) False-positive coding for acute myocardial infarction on hospital discharge records: chart audit results from a tertiary centre. Can J Cardiol 6: 383–386.
[70]
Varas-Lorenzo C, Rodriguez LA, Maguire A, Castellsague J, Perez-Gutthann S (2007) Use of oral corticosteroids and the risk of acute myocardial infarction. Atherosclerosis 192: 376–383. doi: 10.1016/j.atherosclerosis.2006.05.019
[71]
Wahl PM, Rodgers K, Schneeweiss S, Gage BF, Butler J, et al. (2010) Validation of claims-based diagnostic and procedure codes for cardiovascular and gastrointestinal serious adverse events in a commercially-insured population. Pharmacoepidemiol Drug Saf 19: 596–603. doi: 10.1002/pds.1924