[1] | Li YM, Fan JG, Wang BY, Lu LG, Shi JP, et al. (2011) Guidelines for the diagnosis and management of alcoholic liver disease: update 2010. J Dig Dis 12: 45–50. doi: 10.1111/j.1751-2980.2010.00477.x
|
[2] | Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. . Gastroenterology. 141: 1572–1585. doi: 10.1053/j.gastro.2011.09.002
|
[3] | Bala S, Szabo G (2012) MicroRNA Signature in Alcoholic Liver Disease. Int J Hepatol doi:10.1155/2012/498232.
|
[4] | Orman ES, Odena G, Bataller R (2013) Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol 28: 77–84. doi: 10.1111/jgh.12030
|
[5] | Ramaiah S, Rivera C, Arteel G (2004) Early-phase alcoholic liver disease: an update on animal models, pathology, and pathogenesis. . Int J Toxicol. 23: 217–231. doi: 10.1080/10915810490502069
|
[6] | Duddempudi AT (2012) Immunology in alcoholic liver disease. Clin Liver Dis 16: 687–698. doi: 10.1016/j.cld.2012.08.003
|
[7] | Siegmund SV, Dooley S, Brenner DA (2005) Molecular mechanisms of alcohol-induced hepatic fibrosis. Dig Dis 23: 264–274. doi: 10.1159/000090174
|
[8] | Mello T, Ceni E, Surrenti C, Galli A (2008) Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol Aspects Med 29: 17–21. doi: 10.1016/j.mam.2007.10.001
|
[9] | Casini A, Cunningham M, Rojkind M, Lieber CS (1991) Acetaldehyde increases procollagen type I and fibronectin gene transcription in cultured rat fat-storing cells through a protein synthesis-dependent mechanism. Hepatology 13: 758–765. doi: 10.1002/hep.1840130424
|
[10] | Chan ES, Liu H, Fernandez P, Luna A, Perez-Aso M, et al. (2013) Adenosine A2A receptors promote collagen production by a Fli1- and CTGF- mediated mechanism. Arthritis Res Ther 15: R58. doi: 10.1186/ar4229
|
[11] | Perez-Aso M, Fernandez P, Mediero A, Chan ES, Cronstein BN (2014) Adenosine 2A receptor promotes collagen production by human fibroblasts via pathways involving cyclic AMP and AKT but independent of Smad2/3. FASEB J 28 802–812: 2013. doi: 10.1096/fj.13-241646
|
[12] | Peng Z, Fernandez P, Wilder T (2008) Ecto-5′-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J 22: 2263–2272. doi: 10.1096/fj.07-100685
|
[13] | Peng Z, Borea PA, Varani K (2009) Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest 119: 582–594. doi: 10.1172/jci37409
|
[14] | Chan ES, Montesinoss MC, Fernanddez P (2006) Adenosine A (2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol 148: 1144–1155.
|
[15] | Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, et al. (2009) Adenosine Induces Loss of Actin Stress Fibers and Inhibits Contraction in Hepatic Stellate Cells via Rho Inhibition. Hepatology 49: 185–194. doi: 10.1002/hep.22589
|
[16] | Hashmi AZ, Hakim W, Kruglov EA (2007) Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J PhysiolGastrointest Liver Physiol 292: 395–401. doi: 10.1152/ajpgi.00208.2006
|
[17] | Che J, Chan ES, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 72: 1626–1636. doi: 10.1124/mol.107.038760
|
[18] | Mandel HG (2002) Update on caffeine consumption, disposition and action. Food ChemToxicol 40: 1231–1234. doi: 10.1016/s0278-6915(02)00093-5
|
[19] | Sawynok J, Yaksh TL (1993) Caffeine as an analgesic adjuvant: A Review of Pharmacology and Mechanisms of Action. Pharmacol Rev 45: 43–85.
|
[20] | Modi AA, Feld JJ, Park Y, Kleiner DE, Everhart JE, et al. (2010) Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology 51: 201–209. doi: 10.1002/hep.23279
|
[21] | Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, et al. (2012) Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 55: 429–436. doi: 10.1002/hep.24731
|
[22] | Saab S, Mallam D, Cox Ii GA, Tong MJ (2013) Impact of coffee on liver diseases: a systematic review. Liver Int. doi:10.1111/liv.12304.
|
[23] | Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, et al. (2013) Caffeine stimulates hepatic lipid metabolism via autophagy-lysosomal pathway. Hepatology doi:10.1002/hep.26667.
|
[24] | Cohen DE, Anania FA (2012) “Chapter 43. Nonalcoholic Fatty Liver Disease” (Online). In Blumberg RS, Burakoff R. CURRENT Diagnosis & Treatment: Gastroenterology, Hepatology, & Endoscopy (2nd ed.). New York: McGraw-Hill. Retrieved 27 November 2013.
|
[25] | Chiang DJ, McCullough AJ (2014) The impact of obesity and metabolic syndrome on alcoholic liver disease. Clin Liver Dis 18: 157–163. doi: 10.1016/j.cld.2013.09.006
|
[26] | Panchal SK, Wong WY, Kauter K, Ward LC, Brown L (2012) Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition 28: 1055–1062. doi: 10.1016/j.nut.2012.02.013
|
[27] | Lv XW, Chen Z, Li J, Zhang L, Liu HF, et al. (2010) Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress. Inflamm Res 59: 635–645. doi: 10.1007/s00011-010-0176-6
|
[28] | Miranda-Mendez A, Lugo-Baruqui A, Armendariz-Borunda J (2010) Molecular basis and current treatment for alcoholic liver disease. Int J Environ Res Public Health 7: 1872–1888. doi: 10.3390/ijerph7051872
|
[29] | Nieto N (2012) A systems biology approach for understanding the collagen regulatory network in alcoholic liver disease. Liver Int 32: 189–198. doi: 10.1111/j.1478-3231.2011.02573.x
|
[30] | Chen A (2002) Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. Biochem J 368: 683–693. doi: 10.1042/bj20020949
|
[31] | Ha MH, Wei L, Rao HY, Liu F, Wang XY, et al. (2008) Effect of interferon-gamma on hepatic stellate cells stimulated by acetaldehyde. Hepatogastroenterology 55: 1059–1065.
|
[32] | Liu Y, Brymora J, Zhang H, Smith B, Ramezani-Moghadam M, et al. (2011) Leptin and acetaldehyde synergistically promotes αSMA expression in hepatic stellate cells by an interleukin 6-dependent mechanism. Alcohol Clin Exp Res 35: 921–928. doi: 10.1111/j.1530-0277.2010.01422.x
|
[33] | Svegliati-Baroni G, Ridolfi F, Di Sario A, Saccomanno S, Bendia E, et al. (2001) Intracellular signaling pathways involved in acetaldehyde-induced collagen and fibronectin gene expression in human hepatic stellate cells. Hepatology 33: 1130–1140. doi: 10.1053/jhep.2001.23788
|
[34] | Svegliati-Baroni G, Inagaki Y, Rincon-Sanchez AR, Else C, Saccomanno S, et al. (2005) Early response of alpha2(I) collagen to acetaldehyde in human hepatic stellate cells is TGF-beta independent. Hepatology 42: 343–352. doi: 10.1002/hep.20798
|
[35] | Daly JW (1993). Mechanism of action of caffeine. In: Garattini S, ed. Caffeine, coffee and health. New York: Raven Press 97–150.
|
[36] | Chiang DJ, Roychowdhury S, Bush K, McMullen MR, Pisano S, et al. (2013) Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PLos ONE 8: e69114. doi: 10.1371/journal.pone.0069114
|
[37] | Purohit V, Brenner DA (2006) Mechanisms of alcohol-induced hepatic fibrosis: a summary of the Ron Thurman Symposium. Hepatology 43: 872–878. doi: 10.1002/hep.21107
|
[38] | Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J BiolChem 275: 2247–2250. doi: 10.1074/jbc.275.4.2247
|
[39] | Wang JH, Batey RG, George J (2006) Role of ethanol in the regulation of hepatic stellate cell function. World J Gastroenterol 12: 6926–6932.
|
[40] | Sun CX, Young HW, Molina JG, Volmer JB, Schnermann J, et al. (2005) A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J Clin Invest 115: 35–43. doi: 10.1172/jci22656
|
[41] | Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64: 1471–1483. doi: 10.1007/s00018-007-6497-0
|
[42] | Cronstein BN (2011) Adenosine receptors and fibrosis: a translational review. F1000 Biol Rep 3: 21. doi: 10.3410/b3-21
|
[43] | Gessi S, Merighi S, Varani K, Borea PA (2007) Adenosine receptors in health and disease. Adv Pharmacol 61: 41–75. doi: 10.1016/b978-0-12-385526-8.00002-3
|
[44] | Klinger M, Freissmuth M, Nanoff C (2002) Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 14: 99–108. doi: 10.1016/s0898-6568(01)00235-2
|
[45] | Schulte G, Fredholm BB (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58: 477–482.
|
[46] | Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15: 813–827. doi: 10.1016/s0898-6568(03)00058-5
|
[47] | Nakata H (2007) Mitogen-activated protein kinase signaling is involved in suramin-induced neurite outgrowth in a neuronal cell line. Biochem Biophys Res Commun 355: 842–848. doi: 10.1016/j.bbrc.2007.02.045
|
[48] | Lin J, Chen A (2011) Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2. Mol Cell Endocrinol 333: 160–167. doi: 10.1016/j.mce.2010.12.028
|
[49] | Yan KF, Deng X, Zhai XG, Zhou MM, Jia X, et al. (2012) p38 Mitogen-Activated Protein Kinase and Liver X Receptor-α Mediate the Leptin Effect on Sterol Regulatory Element Binding Protein-1c Expression in Hepatic Stellate Cells. Mol Med 18: 10–18.
|
[50] | Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12: 258–266. doi: 10.1016/s0962-8924(02)02294-8
|
[51] | Silva E, Kabil A, Kortenkamp A (2010) Cross-talk between non-genomic and genomic signalling pathways-distinct effect profiles of environmental estrogens. ToxicolAppl Pharmacol 245: 160–170. doi: 10.1016/j.taap.2010.02.015
|
[52] | Wallacides A, Chesnel A, Ajj H, Chillet M, Flament S, et al. (2011) Estrogens promote proliferation of the seminoma-like TCam-2 cell line through a GPER-dependent ERα36 induction. Mol Cell Endocrinol 350: 61–71. doi: 10.1016/j.mce.2011.11.021
|
[53] | Zhang X, Li JH, Duan SX, Lin QJ, Ke S, et al. (2013) G Protein-Coupled Estrogen Receptor-Protein Kinase A-ERK-CREB Signaling Pathway is Involved in the Regulation of Mouse Gubernaculum Testis Cells by Diethylstilbestrol. Arch Environ Contam Toxicol. doi:10.1007/s00244-013-9976-3.
|