全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Hump-Shaped Density-Dependent Regulation of Mosquito Oviposition Site-Selection by Conspecific Immature Stages: Theory, Field Test with Aedes albopictus, and a Meta-Analysis

DOI: 10.1371/journal.pone.0092658

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oviposition site selection by gravid females is an important determinant of the distribution, abundance, and dynamics of dipteran hematophagous insects. The presence of conspecific immature stages in a potential oviposition site could, on the one hand, indicate the suitability of that site but on the other hand could indicate the potential for intraspecific competition. In this paper, we present a graphic model suggesting that the trade-off between these two opposing forces could result in a hump-shaped density-dependent relationship between oviposition rate and conspecific immature stage density (hereafter, the “Hump-shaped regulation model”) with positive effects of aggregation prevailing at low densities and negative effect of intraspecific competition prevailing at higher densities. We field-tested the predictions of this model at both the egg- and the larval levels with Aedes albopictus and evaluated if and how these relationships are affected by resource enrichment. We found support for the hump-shaped regulation model at both the larval and the egg levels. Using oviposition cups containing varying numbers of conspecific larvae, we showed that the oviposition activity of Ae. albopictus first increases and then decreases with larvae number. Medium enrichment resulted in higher hatching rate, and demonstrated linear relations for the no-enrichment treatment where larvae density range was low and hump-shaped relationship for the enriched medium that had a wider larvae density range. Using pairs of oviposition cups, we showed that at low egg densities mosquitoes laid more eggs on substrates containing pre-existing eggs. However, at higher egg densities, mosquitoes laid more eggs on a virgin substrate. Based on our results and on a meta-analysis, we suggest that due to study design or methodological shortcomings the hump-shaped regulation model is often left undetected and that it is likely to be more common than currently thought.

References

[1]  Bentley MD, Day JF (1989) Chemical ecology and behavioral-aspects of mosquito oviposition. Annual Review of Entomology 34: 401–421. doi: 10.1146/annurev.ento.34.1.401
[2]  Rova E, Bjorklund M (2011) Can preference for oviposition sites initiate reproductive isolation in callosobruchus maculatus? PLos ONE 6.
[3]  Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in lepidoptera. Annual Review of Entomology 36: 65–89. doi: 10.1146/annurev.ento.36.1.65
[4]  Vonesh JR, Blaustein L (2010) Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Israel Journal of Ecology & Evolution 56: 263–279. doi: 10.1560/ijee.56.3-4.263
[5]  Yoshioka M, Couret J, Kim F, McMillan J, Burkot TR, et al.. (2012) Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites & Vectors 5.
[6]  Blaustein L (1999) Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community structure. In: Wasser SP, editors. Evolutionary Theory and Processes: Modern Perspectives. Dordrecht, Netherlands: Kluwer. pp. 441–456.
[7]  Ellis AM (2008) Incorporating density dependence into the oviposition preference - offspring performance hypothesis. Journal of Animal Ecology 77: 247–256. doi: 10.1111/j.1365-2656.2007.01345.x
[8]  Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis et Applicata 47: 3–14. doi: 10.1111/j.1570-7458.1988.tb02275.x
[9]  Valladares G, Lawton JH (1991) Host-plant selection in the holly leaf-miner - does mother know best. Journal of Animal Ecology 60: 227–240. doi: 10.2307/5456
[10]  Blaustein L, Ostfeld RS, Holt RD (2010) A community-ecology framework for understanding vector and vector-borne disease dynamics. Israel Journal of Ecology & Evolution 56: 251–262. doi: 10.1560/ijee.56.3-4.251
[11]  Pates H, Curtis C (2005) Mosquito behavior and vector control. Annual Review of Entomology 50: 53–70. doi: 10.1146/annurev.ento.50.071803.130439
[12]  Pickett JA, Birkett MA, Dewhirst SY, Logan JG, Omolo MO, et al. (2010) Chemical ecology of animal and human pathogen vectors in a changing global climate. Journal of Chemical Ecology 36: 113–121. doi: 10.1007/s10886-010-9739-9
[13]  Wisenden BD (2000) Olfactory assessment of predation risk in the aquatic environment. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 355: 1205–1208. doi: 10.1098/rstb.2000.0668
[14]  Brodin T, Johansson F, Bergsten J (2006) Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history. Freshwater Biology 51: 1277–1285. doi: 10.1111/j.1365-2427.2006.01563.x
[15]  Glos J, Wegner F, Dausmann KH, Linsenmair KE (2008) Oviposition-site selection in an endangered Madagascan frog: Experimental evaluation of a habitat model and its implications for conservation. Biotropica 40: 646–652. doi: 10.1111/j.1744-7429.2008.00411.x
[16]  Resetarits WJ, Wilbur HM (1989) Choice of oviposition site by Hyla chrysoscelis - role of predators and competitors. Ecology 70: 220–228. doi: 10.2307/1938428
[17]  Wasserberg G, White L, Bullard A, King J, Maxwell R (2013) Oviposition site selection in Aedes albopictus (diptera: culicidae): are the effects of predation risk and food level independent? Journal of Medical Entomology 50: 1159–1164. doi: 10.1603/me12275
[18]  Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, et al. (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci U S A 105: 9262–9267. doi: 10.1073/pnas.0802505105
[19]  Dougherty M, Hamilton G (1997) Dodecanoic acid is the oviposition pheromone of Lutzomyia longipalpis.. Journal of Chemical Ecology 23: 2657–2671. doi: 10.1023/a:1022598523803
[20]  Mccall PJ, Wilson MD, Dueben BD, Bronsvoort BMD, Heath RR (1997) Similarity in oviposition aggregation pheromone composition within the Simulium damnosum (Diptera: Simuliidae) species complex. Bulletin of Entomological Research 87: 609–616. doi: 10.1017/s0007485300038700
[21]  Ellis AM (2008) Incorporating density dependence into the oviposition preference - offspring performance hypothesis. Journal of Animal Ecology 77: 247–256. doi: 10.1111/j.1365-2656.2007.01345.x
[22]  Spencer M, Blaustein L, Cohen JE (2002) Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology 83: 669–679. doi: 10.2307/3071872
[23]  Kershenbaum A, Spencer M, Blaustein L, Cohen JE (2012) Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition. Evolutionary Ecology 26: 955–974. doi: 10.1007/s10682-011-9548-9
[24]  Chaves LF, Keogh CL, Vazquez-Prokopec GM, Kitron UD (2009) Combined sewage overflow enhances oviposition of Culex quinquefasciatus (diptera: culicidae) in urban areas. Journal of Medical Entomology 46: 220–226. doi: 10.1603/033.046.0206
[25]  Chaves LF, Kitron UD (2011) Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. Bulletin of entomological research 101: 633–641. doi: 10.1017/s0007485310000519
[26]  Ahmadi A, Mcclelland GAH (1983) Oviposition attractants of the western treehole mosquito, Aedes sierrensis.. Mosquito News 43: 343–345.
[27]  Bruno DW, Laurence BR (1979) Influence of the apical droplet of culex egg rafts on oviposition of Culex pipiens fatigans (Diptera: Culicidae). Journal of Medical Entomology 16: 300–305.
[28]  Dhileepan K (1997) Physical factors and chemical cues in the oviposition behavior of arboviral vectors Culex annulirostris and Culex molestus (Diptera: Culicidae). Environmental Entomology 26: 318–326.
[29]  Nakamura H (1978) Oviposition preference of Culex pipiens nwlestus and C. tritaeniorhynchus sumnwrosus onto the waters conditioned by the egg rafts or the larvae. Japanese Journal of Sanitary Zoology 29: 117–123.
[30]  Nguyen AT, Williams-Newkirk AJ, Kitron UD, Chaves LF (2012) Seasonal weather, nutrients, and conspecific presence impacts on the southern house mosquito oviposition dynamics in combined sewage overflows. Journal of Medical Entomology 49: 1328–1338. doi: 10.1603/me12090
[31]  Reisen WK, Meyer RP (1990) Attractiveness of selected oviposition substrates for gravid culex tarsalis and Culex quinquefasciatus in California. Journal of the American Mosquito Control Association 6: 244–250.
[32]  Allan SA, Kline DL (1998) Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Ae-albopictus (Diptera : Culicidae). Journal of Medical Entomology 35: 943–947.
[33]  Edgerly JS, McFarland M, Morgan P, Livdahl T (1998) A seasonal shift in egg-laying behaviour in response to cues of future competition in a treehole mosquito. Journal of Animal Ecology 67: 805–818. doi: 10.1046/j.1365-2656.1998.00243.x
[34]  Wong J, Stoddard ST, Astete H, Morrison AC, Scott TW (2011) Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control. Plos Neglected Tropical Diseases 5: 1–12. doi: 10.1371/journal.pntd.0001015
[35]  Onyabe DY, Roitberg BD (1997) The effect of conspecifics on oviposition site selection and oviposition behaviour in Aedes togoi (Theobold) (Diptera : Culicidae). Canadian Entomologist 129: 1173–1176. doi: 10.4039/ent1291173-6
[36]  Wachira SW, Ndung'u M, Njagi PGN, Hassanali A (2010) Comparative responses of ovipositing Anopheles gambiae and Culex quinquefasciatus females to the presence of Culex egg rafts and larvae. Medical and Veterinary Entomology 24: 369–374. doi: 10.1111/j.1365-2915.2010.00913.x
[37]  Zahiri N, Rau ME, Lewis DJ (1997) Oviposition responses of Aedes aegypti and Ae. atropalpus (Diptera: Culicidae) females to waters from conspecific and heterospecific normal larvae and from larvae infected with Plagiorchis elegans (Trematoda: Plagiorchiidae). Journal of Medical Entomology 34: 565–568.
[38]  Kalpage K, Brust R (1973) Oviposition attractant produced by immature Aedes atropalpus. Environmental Entomology 2: 729–730.
[39]  Heard SB (1994) Imperfect oviposition decisions by the pitcher plant mosquito (Wyeomyia smithii). Evolutionary Ecology 8: 493–502. doi: 10.1007/bf01238254
[40]  Pavlovich SG, Rockett CL (2000) Color, bacteria, and mosquito eggs as ovipositional attractants for Aedes aegypti and Aedes albopictus (Diptera : Culicidae). Great Lakes Entomologist 33: 141–153.
[41]  Barbosa RMR, Souto A, Eiras AE, Regis L (2007) Laboratory and field evaluation of an oviposition trap for Culex quinquefasciatus (Diptera : Culicidae). Memórias do Instituto Oswaldo Cruz 102: 523–529. doi: 10.1590/s0074-02762007005000058
[42]  Mboera LEG, Takken W, Mdira KY, Pickett JA (2000) Sampling gravid Culex quinquefasciatus (Diptera : Culicidae) in Tanzania with traps baited with synthetic oviposition pheromone and grass infusions. Journal of Medical Entomology 37: 172–176. doi: 10.1603/0022-2585-37.1.172
[43]  Osgood CE (1971) Oviposition pheromone associated with egg rafts of Culex tarsalis (Diptera: Culicidae). Journal of Economic Entomology 64: 1038–&.
[44]  Laurence BR, Pickett JA (1985) An Oviposition attractant pheromone in Culex quinquefasciatus Say (Diptera, Culicidae). Bulletin of Entomological Research 75: 283–290. doi: 10.1017/s0007485300014371
[45]  Bentley MD, Mcdaniel IN, Lee HP, Stiehl B, Yatagai M (1976) Studies of Aedes triseriatus oviposition attractants produced by larvae of Aedes triseriatus and Aedes atropalpus (Diptera-Culicidae). Journal of Medical Entomology 13: 112–115. doi: 10.4039/ent111143-2
[46]  Maire A, Langis R (1985) Oviposition responses of Aedes (Ochlerotatus) Communis (Diptera, Culicidae) to Larval Holding Water. Journal of Medical Entomology 22: 111–112.
[47]  Dadd RH, Kleinjan JE (1974) Autophagostimulant from Culex pipiens (Diptera:Culicidae) Larvae - distinction from other mosquito larval factors. Environmental Entomology 3: 21–28.
[48]  Chadee DD, Corbet PS, Greenwood JJD (1990) Egg-laying yellow-fever mosquitos avoid sites containing eggs laid by themselves or by conspecifics. Entomologia Experimentalis et Applicata 57: 295–298. doi: 10.1111/j.1570-7458.1990.tb01442.x
[49]  Kiflawi M, Blaustein L, Mangel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecological Entomology 28: 168–173. doi: 10.1046/j.1365-2311.2003.00505.x
[50]  Kitron UD, Webb DW, Novak RJ (1989) Oviposition behavior of Aedes triseriatus (Diptera: Culicidae) - prevalence, intensity, and aggregation of eggs in oviposition traps. Journal of Medical Entomology 26: 462–467.
[51]  Mccrae AWR (1984) Oviposition by african malaria vector mosquitos.2. Effects of site tone, water type and conspecific immatures on target selection by fresh-water Anopheles-gambiae Giles, Sensu-Lato. Annals of Tropical Medicine and Parasitology 78: 307–318.
[52]  Mokany A, Shine R (2003) Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles. Austral Ecology 28: 33–37. doi: 10.1046/j.1442-9993.2003.01239.x
[53]  Munga S, Minakawa N, Zhou GF, Barrack OAJ, Githeko AK, et al. (2006) Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto. Journal of Medical Entomology 43: 221–224. doi: 10.1603/0022-2585(2006)043[0221:eolcap]2.0.co;2
[54]  Reiskind MH, Wilson ML (2004) Culex restuans (Diptera : Culicidae) oviposition behavior determined by larval habitat quality and quantity in southeastern Michigan. Journal of Medical Entomology 41: 179–186. doi: 10.1603/0022-2585-41.2.179
[55]  Sumba LA, Ogbunugafor CB, Deng AL, Hassanali A (2008) Regulation of Oviposition in Anopheles gambiae s.s.: Role of Inter- and Intra-Specific Signals. Journal of Chemical Ecology 34: 1430–1436. doi: 10.1007/s10886-008-9549-5
[56]  Benzon GL, Apperson CS (1988) Reexamination of chemically mediated oviposition behavior in aedes-aegypti (L) (Diptera:Culicidae). Journal of Medical Entomology 25: 158–164.
[57]  Blackwell A, Mordue AJ, Hansson BS, Wadhams LJ, Pickett JA (1993) A behavioral and electrophysiological study of oviposition cues for Culex quinquefasciatus. Physiological Entomology 18: 343–348. doi: 10.1111/j.1365-3032.1993.tb00607.x
[58]  Braks MAH, Leal WS, Carde RT (2007) Oviposition responses of gravid female Culex quinquefasciatus to egg rafts and low doses of oviposition pheromone under semifield conditions. Journal of Chemical Ecology 33: 567–578. doi: 10.1007/s10886-006-9223-8
[59]  Williams CR, Leach KJ, Wilson NJ, Swart VR (2008) The Allee effect in site choice behaviour of egg-laying dengue vector mosquitoes. Tropical Biomedicine 25: 140–144.
[60]  Zahiri N, Rau ME (1998) Oviposition attraction and repellency of Aedes aegypti (Diptera : Culicidae) to waters from conspecific larvae subjected to crowding, confinement, starvation, or infection. Journal of Medical Entomology 35: 782–787.
[61]  Allee WC (1931) Animal aggregations, a study in general sociology. Chicago: University of Chicago Press.
[62]  Agnew P, Hide M, Sidobre C, Michalakis Y (2002) A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecological Entomology 27: 396–402. doi: 10.1046/j.1365-2311.2002.00430.x
[63]  Armistead JS, Nishimura N, Escher RL, Lounibos LP (2008) Larval competition between Aedes japonicus and Aedes atropalpus (Diptera: Culicidae) in simulated rock pools. Journal of Vector Ecology 33: 238–246. doi: 10.3376/1081-1710-33.2.238
[64]  Edgerly JS, Livdahl TP (1992) Density-dependent interactions within a complex life-cycle - the roles of cohort structure and mode of recruitment. Journal of Animal Ecology 61: 139–150. doi: 10.2307/5517
[65]  Ganesan K, Mendki MJ, Suryanarayana MVS, Prakash S, Malhotra RC (2006) Studies of Aedes aegypti (Diptera : Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Australian Journal of Entomology 45: 75–80. doi: 10.1111/j.1440-6055.2006.00513.x
[66]  Navarro-Silva MA, Marques FA, Duque JE (2009) Review of semiochemicals that mediate the oviposition of mosquitoes: a possible sustainable tool for the control and monitoring of Culicidae. Revista Brasileira de Entomologia 53: 1–6. doi: 10.1590/s0085-56262009000100002
[67]  McCulagh P, Nelder JA (1989) Generalized Linear Models. Chapman and Hall.
[68]  Otieno WA, Onyango TO, Pile MM, Laurence BR, Dawson GW, et al. (1988) A field trial of the synthetic oviposition pheromone with Culex quinquefasciatus Say (Diptera:Culicidae) in Kenya. Bulletin of Entomological Research 78: 463–478. doi: 10.1017/s0007485300013213
[69]  Ponnusamy L, Boroczky K, Wesson DM, Schal C, Apperson CS (2011) Bacteria stimulate hatching of yellow fever mosquito eggs. PLos ONE 6.
[70]  Chaves LF, Keogh CL, Nguyen AM, Decker GM, Vazquez-Prokopec GM, et al. (2011) Combined sewage overflow accelerates immature development and increases body size in the urban mosquito Culex quinquefasciatus. Journal of Applied Entomology 135: 611–620. doi: 10.1111/j.1439-0418.2010.01580.x
[71]  Fretwell SD, Lucas HL (1970) On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Biotheoretica 19: 16–36. doi: 10.1007/bf01601953
[72]  Bouskila A, Blumstein DT (1992) Rules of thumb for predation hazard assessment - predictions from a dynamic-model. American Naturalist 139: 161–176. doi: 10.1086/285318
[73]  Ellis AM (2008) Linking movement and oviposition behaviour to spatial population distribution in the tree hole mosquito Ochlerotatus triseriatus. Journal of Animal Ecology 77: 156–166. doi: 10.1111/j.1365-2656.2007.01319.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133