[1] | Singer A, Clark R (1999) Mechanisms of disease - cutaneous wound healing. New England Journal of Medicine 341: 738–746. doi: 10.1056/nejm199909023411006
|
[2] | Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clinics in dermatology 25: 9–18. doi: 10.1016/j.clindermatol.2006.09.007
|
[3] | Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453: 314–321. doi: 10.1038/nature07039
|
[4] | Vaughan M, Howard E, Tomasek J (2000) Transforming growth factor-beta 1 promotes the morphological and functional differentiation of the myofibroblast. Experimental cell research 257: 180–189. doi: 10.1006/excr.2000.4869
|
[5] | Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47: 1394–1400. doi: 10.1002/hep.22193
|
[6] | Discher D, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310: 1139–1143. doi: 10.1126/science.1116995
|
[7] | Engler A, Griffin M, Sen S, Bonnetnann C, Sweeney H, et al. (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. Journal of Cell Biology 166: 877–887. doi: 10.1083/jcb.200405004
|
[8] | Harland B, Walcott S, Sun SX (2011) Adhesion dynamics and durotaxis in migrating cells. Physical Biology 8: 015011. doi: 10.1088/1478-3975/8/1/015011
|
[9] | Lo C, Wang H, Dembo M, Wang Y (2000) Cell movement is guided by the rigidity of the substrate. Biophysical journal 79: 144–152. doi: 10.1016/s0006-3495(00)76279-5
|
[10] | Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proceedings of the National Academy of Sciences of the United States of America 104: 8281–8286. doi: 10.1073/pnas.0702259104
|
[11] | Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, et al. (2012) Mechanical waves during tissue expansion. Nature Physics 8: 628–634. doi: 10.1038/nphys2355
|
[12] | Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology 7: 265–275. doi: 10.1038/nrm1890
|
[13] | Borau C, Kim T, Bidone T, Garcia-Aznar JM, Kamm RD (2012) Dynamic mechanisms of cell rigidity sensing: Insights from a computational model of actomyosin networks. Plos One 7: e49174. doi: 10.1371/journal.pone.0049174
|
[14] | Jones C, Ehrlich HP (2011) Fibroblast expression of alpha-smooth muscle actin, alpha 2 beta 1 integrin and alpha v beta 3 integrin: Influence of surface rigidity. Experimental and molecular pathology 91: 394–399. doi: 10.1016/j.yexmp.2011.04.007
|
[15] | Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, et al. (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proceedings of the National Academy of Sciences of the United States of America 106: 18243–18248. doi: 10.1073/pnas.0903994106
|
[16] | Mitrossilis D, Fouchard J, Pereira D, Postic F, Richert A, et al. (2010) Real-time single-cell response to stiffness. Proceedings of the National Academy of Sciences of the United States of America 107: 16518–16523. doi: 10.1073/pnas.1007940107
|
[17] | Pelham R, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America 94: 13661–13665. doi: 10.1073/pnas.94.25.13661
|
[18] | Adam J (2000) A simplified model of wound healing (with particular reference to the critical size defect) (vol 30, pg 23, 1999). Mathematical and Computer Modelling 31: 237–237. doi: 10.1016/s0895-7177(00)00054-6
|
[19] | Murray JD, Cook J, Tyson R, Lubkin SR (1998) Spatial pattern formation in biology: I. dermal wound healing. ii. bacterial patterns. Journal of the Franklin Institute-Engineering and Applied Mathematics 335B: 303–332. doi: 10.1016/s0016-0032(97)00034-3
|
[20] | Sherratt J, Murray J (1991) Mathematical-analysis of a basic model for epidermal wound-healing. Journal of mathematical biology 29: 389–404. doi: 10.1007/bf00160468
|
[21] | Olsen L, Sherratt JA, Maini PK (1995) A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. Journal of theoretical biology 177: 113–128. doi: 10.1006/jtbi.1995.0230
|
[22] | Olsen L, Sherratt JA, Maini PK (1996) A mathematical model for fibro-proliferative wound healing disorders. Bulletin of mathematical biology 58: 787–808. doi: 10.1007/bf02459482
|
[23] | Javierre E, Moreo P, Doblare M, Garcia-Aznar JM (2009) Numerical modeling of a mechanochemical theory for wound contraction analysis. International Journal of Solids and Structures 46: 3597–3606. doi: 10.1016/j.ijsolstr.2009.06.010
|
[24] | Murphy KE, Hall CL, McCue SW, McElwain DLS (2011) A two-compartment mechanochemical model of the roles of transforming growth factor beta and tissue tension in dermal wound healing. Journal of theoretical biology 272: 145–159. doi: 10.1016/j.jtbi.2010.12.011
|
[25] | Murphy KE, Hall CL, Maini PK, McCue SW, McElwain DLS (2012) A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics. Bulletin of mathematical biology 74: 1143–1170. doi: 10.1007/s11538-011-9712-y
|
[26] | Tranquillo R, Murray J (1992) Continuum model of fibroblast-driven wound contraction - inflammation-mediation. Journal of theoretical biology 158: 135. doi: 10.1016/s0022-5193(05)80715-5
|
[27] | Ghosh K, Pan Z, Guan E, Ge S, Liu Y, et al. (2007) Cell adaptation to a physiologically relevant ecm mimic with different viscoelastic properties. Biomaterials 28: 671–679. doi: 10.1016/j.biomaterials.2006.09.038
|
[28] | Moreo P, Garcia-Aznar JM, Doblare M (2008) Modeling mechanosensing and its effect on the migration and proliferation of adherent cells rid f-8256-2010. Acta Biomaterialia 4: 613–621. doi: 10.1016/j.actbio.2007.10.014
|
[29] | Hinz B, Gabbiani G (2003) Mechanisms of force generation and transmission by myofibroblasts. Current opinion in biotechnology 14: 538–546. doi: 10.1016/j.copbio.2003.08.006
|
[30] | Grinnell F (2000) Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends in cell biology 10: 362–365. doi: 10.1016/s0962-8924(00)01802-x
|
[31] | Tomasek J, Gabbiani G, Hinz B, Chaponnier C, Brown R (2002) Myofibroblasts and mechanoregulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology 3: 349–363. doi: 10.1038/nrm809
|
[32] | Arora P, Narani N, McCulloch C (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. American Journal of Pathology 154: 871–882. doi: 10.1016/s0002-9440(10)65334-5
|
[33] | Hinz B, Mastrangelo D, Iselin C, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. American Journal of Pathology 159: 1009–1020. doi: 10.1016/s0002-9440(10)61776-2
|
[34] | Roy S, Biswas S, Khanna S, Gordillo G, Bergdall V, et al. (2009) Characterization of a preclinical model of chronic ischemic wound. Physiological Genomics 37: 211–224. doi: 10.1152/physiolgenomics.90362.2008
|
[35] | McGrath M, Simon R (1983) Wound geometry and the kinetics of wound contraction. Plastic and Reconstructive Surgery 72: 66–72. doi: 10.1097/00006534-198307000-00015
|
[36] | Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M (2010) An interspecies computational study on limb lengthening. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 224: 1245–1256.
|
[37] | Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Brechet YJM, et al. (2012) How linear tension converts to curvature: Geometric control of bone tissue growth. Plos One 7: e36336. doi: 10.1371/journal.pone.0036336
|
[38] | Radovanac K, Morgner J, Schulz JN, Blumbach K, Patterson C, et al. (2013) Stabilization of integrin-linked kinase by the hsp90-chip axis impacts cellular force generation, migration and the fibrotic response. Embo Journal 32: 1409–1424. doi: 10.1038/emboj.2013.90
|
[39] | Bluestein D, Javaheri A (2008) Pressure ulcers: Prevention, evaluation, and management. American Family Physician 78: 1186–1194.
|
[40] | Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Molecular Medicine 17: 113–125.
|
[41] | Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, et al. (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. Faseb Journal 21: 3250–3261. doi: 10.1096/fj.07-8218com
|
[42] | Ogawa R (2011) Mechanobiology of scarring. Wound Repair and Regeneration 19: S2–S9. doi: 10.1111/j.1524-475x.2011.00707.x
|
[43] | Guidry C (1992) Extracellular-matrix contraction by fibroblasts - peptide promoters and 2nd messengers. Cancer and metastasis reviews 11: 45–54. doi: 10.1007/bf00047602
|
[44] | Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. Journal of Cell Biology 124: 401–404. doi: 10.1083/jcb.124.4.401
|
[45] | Chiquet M, Reneda A, Huber F, Fluck M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology 22: 73–80. doi: 10.1016/s0945-053x(03)00004-0
|
[46] | Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends in cell biology 13: 264–269. doi: 10.1016/s0962-8924(03)00057-6
|
[47] | Grotendorst G, Seppa H, Kleinman H, Martin G (1981) Attachment of smooth-muscle cells to collagen and their migration toward platelet-derived growth-factor. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78: 3669–3672. doi: 10.1073/pnas.78.6.3669
|
[48] | Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation-tissue and scar. American Journal of Pathology 146: 56–66.
|
[49] | Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Experimental cell research 250: 273–283. doi: 10.1006/excr.1999.4543
|
[50] | Roberts A, Sporn M, Assoian R, Smith J, Roche N, et al. (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences of the United States of America 83: 4167–4171. doi: 10.1073/pnas.83.12.4167
|
[51] | Khatyr F, Imberdis C, Vescovo P, Varchon D, Lagarde JM (2004) Model of the viscoelastic behaviour of skin in vivo and study of anisotropy. Skin Research and Technology 10: 96–103. doi: 10.1111/j.1600-0846.2004.00057.x
|