The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.
References
[1]
Murray L, Jones CT, Rice CM (2008) Architects of assembly: role of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6: 699–708. doi: 10.1038/nrmicro1928
[2]
Shepard CW, Finelli L, Alter MJ (2005) Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5: 558–567. doi: 10.1016/s1473-3099(05)70216-4
[3]
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The global distribution and burden of dengue. Nature 496: 504–507. doi: 10.1038/nature12060
[4]
Gray EW, Nettleton PF (1987) The ultrastructure of cell cultures infected with border disease and bovine virus diarrhea viruses. J Gen Virol 68: 2239–2246. doi: 10.1099/0022-1317-68-9-2339
[5]
Westaway EG, McKenzie JM, Kenney MT, Jones MK, Khromykh AA (1997) Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71: 6650–6661.
[6]
Miller S, Krijnse-Locker J (2008) Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6: 363–374. doi: 10.1038/nrmicro1890
[7]
Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CKE, et al. (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5: 365–375. doi: 10.1016/j.chom.2009.03.007
[8]
Ferraris P, Blanchard E, Roingeard P (2010) Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol 91: 2230–2237. doi: 10.1099/vir.0.022186-0
[9]
Ferraris P, Beaumont E, Uzbekov R, Brand D, Gaillard J, et al. (2013) Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection. Cell Mol Life Sci 70: 1297–1306. doi: 10.1007/s00018-012-1213-0
[10]
Ko KK, Igarashi A, Fukai K (1979) Electron microscopic observations on Aedes albopictus cells infected with dengue viruses. Arch Virol 62: 41–52. doi: 10.1007/bf01314902
[11]
Deubel V, Digoutte JP, Mattei X, Pandare D (1981) Morphogenesis of yellow fever virus in Aedes aegypti cultured cells: an ultrastructural study. Am J Trop Med Hyg 30: 1071–1077.
[12]
Hase T, Summers PL, Eckels KH, Baze WB (1987) An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: maturation events. Arch Virol 92: 273–291. doi: 10.1007/bf01317484
[13]
Barth OM (1992) Replication of dengue viruses in mosquito cell cultures: a model from ultrastructural observations. Mem Inst Oswaldo Cruz 87: 565–574. doi: 10.1590/s0074-02761992000400017
[14]
Barth OM (2000) Atlas of dengue viruses: morphology and morphogenesis. Imprinta Express Ltda, Rio de Janeiro.
[15]
Blanchard E, Brand D, Trassard S, Goudeau A, Roingeard P (2002) Hepatitis C virus-like particle morphogenesis. J Virol 76: 4073–4079. doi: 10.1128/jvi.76.8.4073-4079.2002
[16]
Müller-Reichert T, Srayko M, Hyman A, O'Toole ET, McDonald K (2007) Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol 79: 101–119. doi: 10.1016/s0091-679x(06)79004-5
[17]
Kolotuev I, Schwab Y, Labouesse M (2010) A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms. Biol Cell 102: 121–132. doi: 10.1042/bc20090096
[18]
Mironov AA, Beznoussenko GV (2012) Correlative light-electron microscopy: a potent tool for the imaging of rare or unique cellular and tissue events and structures. In Methods Enzymol 504: 201–219. doi: 10.1111/j.1365-2818.2009.03222.x
[19]
Guizetti J, M?ntler J (2010) Correlative time-lapse imaging and electron microscopy to study abscission in HeLa cells. Methods Cell Biol 96: 591–601. doi: 10.1016/s0091-679x(10)96024-x
[20]
Guy B, Saville M, Lang J (2010) Development of Sanofi Pasteur tetravalant dengue vaccine. Hum Vaccines 6: 696–705. doi: 10.4161/hv.6.9.12739
[21]
Depla M, Uzbekov R, Hourioux C, Blanchard E, Le Gouge A, et al. (2010) Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 67: 3151–3161. doi: 10.1007/s00018-010-0373-z
[22]
Chu JJH, Ng ML (2002) Infection of polarized epithelial cells with flavivirus West Nile : polarized entry and egress of virus occur through the apical surface. J Gen Virol 83: 2427–2435.
[23]
Chen Z, Lin X, Zhang Z, Huang J, Fu S, et al. (2011) EXO70 protein influences dengue virus secretion. Microbes Infect 13: 143–150. doi: 10.1016/j.micinf.2010.10.011
[24]
Gastaminza P, Kapadia SB, Chisari FV (2006) Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J Virol 80: 11074–11081. doi: 10.1128/jvi.01150-06
[25]
Macovei A, Zitmann N, Lazar C, Dwek RA, Branza-Nichita N (2006) Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity. Biochem Biophys Res Commun 346: 1083–1090. doi: 10.1016/j.bbrc.2006.06.023
[26]
Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, et al. (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319: 1834–1837. doi: 10.1126/science.1153264
[27]
Stadler K, Allison SL, Schalich J, Heinz FX (1997) Proteoloytic activation of tick-borne encephalitis virus by furin. J Virol 71: 8475–8481.