We propose, for the first time to our knowledge, the theoretical investigation of silicon nanocrystals-based sandwiched slot waveguides which are dispersion-engineered for exciting optical solitons inside very short structures (only 1.2?mm long). Several parametric simulations have been performed by means of finite element method in order to individuate the best waveguide cross-sections for achieving an anomalous dispersion regime around 1550?nm. 1. Introduction In the last few years, silicon has become the ideal platform for integrated optics and optoelectronics due to its broad application potential, going from optical interconnects to biosensing [1]. The quality of commercial silicon wafers driven by microelectronics industry still continues to improve while the cost continues to decrease. Moreover, the compatibility with silicon integrated circuits manufacturing and silicon micro-electromechanical systems (MEMSs) technology is very high, and it represents another important reason for this interest in silicon photonics [2, 3]. Recently, several high-speed electro-optical functionalities have been demonstrated in silicon, such as a 40?Gbit/s modulator based on free-carrier (FC) plasma dispersion effect [4]. However, in order to reach much higher speeds (100?Gbit/s and beyond), the electrical domain should be completely overcome and the information data transfer should be entirely processed in the optical domain (ultrafast all-optical processing). In this sense, a number of research study has been performed in order to exploit the ultrafast third-order nonlinear effects in silicon. As a transmission medium, silicon has much higher nonlinear effects than the commonly used silicon dioxide (i.e., optical fibers), in particular Kerr and Raman effects. Additionally, silicon-on-insulator (SOI) waveguides can confine the optical field to an area that is approximately 100 times smaller than the modal area in a standard single-mode optical fiber. Consequently, it is expected that nonlinear optical effects should occur in these waveguides at lower input powers, similar to those used in optical communications systems. For example, several recent experimental and theoretical studies have been focused for exploiting the stimulated Raman scattering (SRS) in the SOI integrated platform. In fact, the need for active devices in SOI has stimulated an increasing research effort in Raman-based light amplification [5–12] and generation [13–20]. Moreover, the ability to generate and utilize large bandwidths using parametric processes is crucial for a large range of photonic
References
[1]
R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678–1687, 2006.
[2]
G. T. Reed, “The optical age of silicon,” Nature, vol. 427, no. 6975, pp. 595–596, 2004.
[3]
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, John Wiley, West Sussex, UK, 2004.
[4]
L. Liao, A. Liu, D. Rubin et al., “40?Gbit/s silicon optical modulator for high-speed applications,” Electronics Letters, vol. 43, no. 22, pp. 1196–1197, 2007.
[5]
R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Optics Express, vol. 10, no. 22, pp. 1305–1313, 2002.
[6]
R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Optics Express, vol. 11, no. 15, pp. 1731–1739, 2003.
[7]
A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Optics Express, vol. 12, no. 18, pp. 4261–4268, 2004.
[8]
Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Optics Express, vol. 12, no. 19, pp. 4437–4442, 2004.
[9]
Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide,” Optics Letters, vol. 30, no. 1, pp. 35–37, 2005.
[10]
R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Optics Express, vol. 12, no. 16, pp. 3713–3718, 2004.
[11]
V. M. N. Passaro and F. De Leonardis, “Space—Time modeling of Raman pulses in silicon-on-insulator optical waveguides,” Journal of Lightwave Technology, vol. 24, no. 7, pp. 2920–2931, 2006.
[12]
F. De Leonardis and V. M. N. Passaro, “Ultrafast Raman pulses in SOI optical waveguides for nonlinear signal processing,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 3, Article ID 4538023, pp. 739–751, 2008.
[13]
O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Optics Express, vol. 12, no. 21, pp. 5269–5273, 2004.
[14]
M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Optics Express, vol. 12, no. 23, pp. 5703–5710, 2004.
[15]
H. Rong, R. Jones, A. Liu et al., “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.
[16]
H. Rong, A. Liu, R. Jones et al., “An all-silicon Raman laser,” Nature, vol. 433, no. 7023, pp. 292–294, 2005.
[17]
O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Optics Express, vol. 13, no. 3, pp. 796–800, 2005.
[18]
F. De Leonardis and V. M. N. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New Journal of Physics, vol. 9, article A25, pp. 1–24, 2007.
[19]
H. Rong, S. Xu, O. Cohen et al., “A cascaded silicon Raman laser,” Nature Photonics, vol. 2, no. 3, pp. 170–174, 2008.
[20]
V. M. N. Passaro and F. de Leonardis, “Investigation of SOI raman lasers for mid-infrared gas sensing,” Sensors, vol. 9, no. 10, pp. 7814–7836, 2009.
[21]
H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Optics Express, vol. 14, no. 3, pp. 1182–1188, 2006.
[22]
Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Optics Express, vol. 14, no. 24, pp. 11721–11726, 2006.
[23]
V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton et al., “Broadband wavelength conversion at 40?Gb/s using long serpentine As(2)S3 planar waveguides,” Optics Express, vol. 15, no. 23, pp. 15047–15052, 2007.
[24]
B. G. Lee, A. Biberman, A. C. Turner-Foster et al., “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photonics Technology Letters, vol. 21, no. 3, pp. 182–184, 2009.
[25]
G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, London, UK, 3rd edition, 2001.
[26]
J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Optical solitons in a silicon waveguide,” Optics Express, vol. 15, no. 12, pp. 7682–7688, 2007.
[27]
J. Blasco, J. V. Galán, P. Sanchis et al., “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Optics Communications, vol. 283, no. 3, pp. 435–437, 2010.
[28]
A. Martínez, J. Blasco, P. Sanchis et al., “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters, vol. 10, no. 6, pp. 1506–1511, 2010.
[29]
T. Creazzo, B. Redding, E. Marchena, S. Shi, and D. W. Prather, “Free-carrier absorption modulation in silicon nanocrystal slot waveguides,” Optics Letters, vol. 35, no. 21, pp. 3691–3693, 2010.
[30]
L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Optics Express, vol. 18, no. 12, pp. 13187–13193, 2010.
[31]
L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Optics Express, vol. 18, no. 19, pp. 20529–20534, 2010.
[32]
Comsol Multiphysics by COMSOL, Stockholm, single license, 2005.
[33]
R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” Journal of Optics A, vol. 8, no. 10, pp. 840–848, 2006.
[34]
R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 1, pp. 123–129, 1987.
[35]
R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Optics Express, vol. 12, no. 12, pp. 2774–2780, 2004.
[36]
S. Deb and A. Sharma, “Nonlinear pulse propagation through optical fibers: an efficient numerical method,” Optical Engineering, vol. 32, pp. 695–699, 1993.
[37]
T. Tanabe, K. Nishiguchi, A. Shinya et al., “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Applied Physics Letters, vol. 90, no. 3, Article ID 031115, 2007.
[38]
M. Waldow, T. Pl?tzing, M. Gottheil et al., “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Optics Express, vol. 16, no. 11, pp. 7693–7702, 2008.
[39]
K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Applied Physics Letters, vol. 92, no. 15, Article ID 151104, 2008.