Two new ruthenium(II) mixed ligand terpyridine complexes, “Ru(Htcterpy)(NCS)(L1) (N(C4H9)4), mLBD1” and Ru(Htcterpy)(NCS)(L2)(N(C4H9)4), mLBD2 were synthesized and fully characterized by UV-Vis, emission, cyclic voltammogram, and other spectroscopic means, and the structures of the compounds are confirmed by 1H-NMR, ESI-MASS, and FT-IR spectroscopes. The influence of the substitution of L1 and L2 on solar-to-electrical energy conversion efficiency (η) of dye-sensitized solar cells (DSSCs) was evaluated relative to reference black dye. The dyes showed molar extinction coefficients of 17600?M?1?cm?1 for mLBD1 and 21300?M?1?cm?1 for mLBD2 both at λ maximum of 512?nm, while black dye has shown 8660?M?1?cm?1 at λ maximum of 615?nm. The monochromatic incident photon-to-collected electron conversion efficiencies of 60.71% and 75.89% were obtained for mLBD1 and mLBD2 dyes, respectively. The energy conversion efficiencies of mLBD1 and mLBD2 dyes are 3.15% ( ?mA/cm2, ?mV, ) and 3.36% ( ?mA/cm2, ?mV, ), respectively, measured at the AM1.5G conditions, the reference black dye-sensitized solar cell, fabricated and evaluated under identical conditions exhibited η-value of 2.69% ( ?mA/cm2, ?mV, ). 1. Introduction Among various photo voltaic technologies, dye-sensitized solar cells (DSSCs) are known to be less expensive, easy to fabricate and very efficient at varied incident angle of light. Therefore, intense attention has been devoted in the last two decades to the synthesis of new materials as sensitizers, metal oxide semiconductors, counter electrode materials, electrolytes, and so forth, for applications in high-performance and long durable DSSCs [1–6]. Especially sensitizer plays important role in the DSSCs device for obtaining high-efficiency and long-term durability because of the possibility to chemically modify the sensitizer for better anchoring on TiO2, electron injection property and HOMO-LUMO tuning. To achieve this, many researchers around the world have been working either on modification of various reported sensitizers or designing new sensitizers. A variety of ruthenium(II) polypyridyl, terpyridyl and tetrapyridyl complexes, metal-free organic sensitizers, porphyrins, and phthalocyanines have been developed, since Graetzel introduced the first efficient nanocrystalline TiO2 solar cell sensitized with cis-bis(thiocyanato) bis(2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II) bis (tetrabutylammonium) (N719) [7–14]. Introduced in 1997, another ruthenium complex, black dye [tri(isothiocyanato)-2,2′,2′′-terpyridyl-4,4′,4′′-tricarboxylate ruthenium(II)]
References
[1]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010.
[2]
D. Wei, “Dye sensitized solar cells,” International Journal of Molecular Sciences, vol. 11, no. 3, pp. 1103–1113, 2010.
[3]
M. Gr?tzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001.
[4]
B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[5]
G. J. Meyer, “The 2010 millennium technology grand prize: dye-sensitized solar cells,” ACS Nano, vol. 4, no. 8, pp. 4337–4343, 2010.
[6]
S. M. Zakeeruddin, M. K. Nazeeruddin, R. Humphry-Baker et al., “Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films,” Langmuir, vol. 18, no. 3, pp. 952–954, 2002.
[7]
W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley, “Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1363–1379, 2004.
[8]
P. Y. Reddy, L. Giribabu, C. Lyness et al., “Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine,” Angewandte Chemie, vol. 46, no. 3, pp. 373–376, 2007.
[9]
D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gr?tzel, “Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers,” Angewandte Chemie, vol. 47, no. 10, pp. 1923–1927, 2008.
[10]
S. Tatay, S. A. Haque, B. O'Regan et al., “Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells,” Journal of Materials Chemistry, vol. 17, no. 29, pp. 3037–3044, 2007.
[11]
M. K. Nazeeruddin, F. D. Angelis, S. Fantacci et al., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 16835–16847, 2005.
[12]
K. Hara, M. Kurashige, S. Ito et al., “Novel polyene dyes for highly efficient dye-sensitized solar cells,” Chemical Communications, vol. 9, no. 2, pp. 252–253, 2003.
[13]
M. Gr?tzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorganic Chemistry, vol. 44, no. 20, pp. 6841–6851, 2005.
[14]
C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, and K. C. Ho, “A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells,” Advanced Materials, vol. 19, no. 22, pp. 3888–3891, 2007.
[15]
M. K. Nazeeruddin, P. Péchy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613–1624, 2001.
[16]
Z.-S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, “Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films,” Langmuir, vol. 21, no. 10, pp. 4272–4276, 2005.
[17]
L. Giribabu, C. V. Kumar, C. S. Rao et al., “High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells,” Energy and Environmental Science, vol. 2, no. 7, pp. 770–773, 2009.
[18]
D. Kuang, C. Klein, S. Ito, et al., “High effiiciency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction cofficient Ru-sensitizer and non-volatile electrolyte,” Advanced Materials, vol. 19, pp. 1133–1137, 2007.
[19]
D. Kuang, C. Klein, Z. Zhang et al., “Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells,” Small, vol. 3, no. 12, pp. 2094–2102, 2007.
[20]
M. Chandrasekharam, C. Srinivasarao, T. Suresh et al., “High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells,” Journal of Chemical Sciences, vol. 123, no. 1, pp. 37–46, 2011.
[21]
M. Chandrasekharam, G. Rajkumar, C. S. Rao et al., “Phenothiazine conjugated bipyridine—a new class of ancillary ligand for Ru-sensitizer in dye sensitized solar cell application,” Synthetic Metals, vol. 161, pp. 1469–1476, 2011.
[22]
M. Chandrasekharam, G. Rajkumar, C. S. Rao et al., “Polypyridyl Ru(II)-sensitizers with extended π-system enhances the performance of dye sensitized solar cells,” Synthetic Metals, vol. 161, no. 11-12, pp. 1098–1104, 2011.
[23]
M. Chandrasekharam, G. Rajkumar, C. S. Rao, P. Y. Reddy, and M. L. Kantam, “Change of dye bath for sensitisation of nanocrystalline TiO2 films: enhances performance of dye-sensitized solar cells,” Advances in OptoElectronics, vol. 2011, Article ID 376369, 2011.
[24]
L. Giribabu, M. Chandrasekheram, M. L. Kantham et al., “Conjugated organic dyes for dye-sensitized solar cells,” Indian Journal of Chemistry A, vol. 45, no. 3, pp. 629–634, 2006.
[25]
A. Islam, F. A. Chowdhury, Y. Chiba et al., “Synthesis and characterization of new efficient tricarboxyterpyridyl (β-diketonato) ruthenium(II) sensitizers and their applications in dye-sensitized solar cells,” Chemistry of Materials, vol. 18, no. 22, pp. 5178–5185, 2006.
[26]
A. Mamo, A. Juris, G. Calogero, and S. Campagna, “Near-infrared luminescence at room temperature of two new osmium(II) terdentate polypyridine complexes,” Chemical Communications, no. 10, pp. 1225–1226, 1996.
[27]
J.-J. Cid, J.-H. Yum, S.-R. Jang et al., “Molecular cosensitization for efficient panchromatic dye-sensitized solar cells,” Angewandte Chemie International Edition, vol. 46, no. 44, pp. 8358–8362, 2007.
[28]
Y. Chi and P.-T. Chou, “Contemporary progresses on neutral, highly emissive Os(ii) and Ru(ii) complexes,” Chemical Society Reviews, vol. 36, no. 9, pp. 1421–1431, 2007.
[29]
B. S. Chen, K. Chen, Y.-H. Hong et al., “Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance,” Chemical Communications, no. 39, pp. 5844–5846, 2009.
[30]
P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gr?tzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials, vol. 2, no. 6, pp. 402–407, 2003.
[31]
M.-X. Li, H.-X. Zhang, X. Zhou, Q.-J. Pan, H.-G. Fu, and C.-C. Sun, “Theoretical studies of the electronic structure and spectroscopic properties of [Ru(Htcterpy)(NCS)3]3-,” European Journal of Inorganic Chemistry, no. 15, pp. 2171–2180, 2007.
[32]
D. Kuang, C. Klein, S. Ito et al., “High-Efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte,” Advanced Materials, vol. 19, no. 8, pp. 1133–1137, 2007.